Advertisement

Effects of Hypoxia and Ischemia on Intracellular Calcium and Relaxation: Studies in the Aequorin-Loaded Whole Heart Model

  • James P. Morgan
  • Kazumasa Harada
  • Achim Meissner
  • Christian Williams
  • Joseph P. Carrozza
  • Lisa A. Bentivegna
  • Yasuki Kihara
  • William Grossman

Abstract

Cardiac hypoxia and ischemia are both pathophysiologic conditions of extreme importance in contemporary medical practice. Clinically significant ischemic heart disease affects some 7 million Americans, with an estimated annual economic impact of $43 billion, and remains the leading cause of death in the United States [1]. Both hypoxia/reoxygenation and ischemia/ reperfusion are associated with marked abnormalities of cardiac contraction and rhythm and have been topics of intense laboratory and clinical investigation [2–4]. An increase in the intracellular concentration of calcium ion (Ca2+ i) has been proposed by several investigators as the explanation for the pathophysiologic changes that occur during acute ischemia and reperfusion [5–13].

Keywords

Intracellular Calcium Myocardial Stunning Coronary Perfusion Pressure Circulation Research Impaired Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rutherford JD, Braunwald E (1992). Chronic ischemic heart disease. In Braunwald E (ed): Heart Disease: A Textbook of Cardiovascular Medicine, 4th edi. New York: W.B. Saunders, pp 292–1364.Google Scholar
  2. 2.
    Reimer KA, Jennings RB (1991). Myocardial ischemia, hypoxia and infarction. In Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds): The Heart and Cardiovascular System. New York: Raven Press, pp 1875–1974.Google Scholar
  3. 3.
    Kleber AG, Oetliker H (1991). Cellular aspects of early contractile failure in ischemia. In Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds): The Heart and Cardiovascular System. New York: Raven Press, pp 1975–1977.Google Scholar
  4. 4.
    Ross J (1991). Mechanical consequences of regional myocardial ischemia. In Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds): The Heart and Cardiovascular System. New York: Raven Press, pp 1997–2021.Google Scholar
  5. 5.
    Kihara Y, Grossman W, Morgan JP (1989). Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res 65:1029–1044.PubMedCrossRefGoogle Scholar
  6. 6.
    Nayler WG, Poole-Wilson PA, Williams A (1979). Hypoxia and calcium. J Mol Cell Cardiol 11: 683–706.PubMedCrossRefGoogle Scholar
  7. 7.
    Duncan CJ (1978). Role of intracellular calcium in promoting muscle damage: A strategy for controlling the dystrophic condition. Experientia 34:1531–1535.PubMedCrossRefGoogle Scholar
  8. 8.
    Jennings RB, Reimer KA, Steenbergen C (1985). Myocardial ischemia and reperfusion: Role of calcium. In Parratt JR (ed): Control and Manipulation of Calcium Movement. New York: Raven Press, pp 273–302.Google Scholar
  9. 9.
    Steenbergen C, Murphy E, Levy L, London RE (1987). Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60:700–707.PubMedCrossRefGoogle Scholar
  10. 10.
    Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, Chacko VP (1987). Intracellular free calcium concentration measured with 19FNMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 84:6005–6009.PubMedCrossRefGoogle Scholar
  11. 11.
    Lattanzio F Jr (1988). Alterations in intracellular free calcium and pH during global ischemia in the isolated perfused rat heart. Biophys J 53:170.Google Scholar
  12. 12.
    Lee CH, Smith N, Mohabir R, Clusin WT (1987). Cytosolic calcium transients from the beating mammalian heart. Proc Natl Acad Sci USA 84:7793–7797.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee CH, Mohabir R, Smith N, Franz MR, Clusin WT (1988). Effects of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing undo 1: Correlation with monophasic action potentials and contraction. Circulation 78:1047–1059.PubMedCrossRefGoogle Scholar
  14. 14.
    Bentivegna LA, Kihara Y, Morgan JP (1991). Techniques for measuring intracellular Ca2+ concentrations in the isolated perfused heart. Methods Mol Cell Biol 2:103–111.Google Scholar
  15. 15.
    Blinks, JR (1992). Intracellular [Ca2+] measurements. In Fozzard HA, Jennings RB, Haber E, Katz AM, Morgan HE (eds): The Heart and Cardiovascular System. New York: Raven Press, pp 1171–1202.Google Scholar
  16. 16.
    Levine MJ, Harada K, Meuse AJ, Watanabe J, Breall J, Carrozza JP, Bentivegna L, Franklin A, Johnson RG, Grossman W, Morgan JP (1991). Excitation-contraction uncoupling during ischemia in the blood perfused dog heart. Biochem Biophys Res Commun 179:502–506.PubMedCrossRefGoogle Scholar
  17. 17.
    Kihara, Y, Morgan JP (1989). A comparative study of three methods for intracellular loading of the calcium indicator aequorin in ferret papillary muscles. Biochem Biophys Res Commun 162:402–407.PubMedCrossRefGoogle Scholar
  18. 18.
    Guarnieri T (1989). Direct measurements of [Ca2+]i in early and late reperfused myocardium (abstr). Circulation 80 (Suppl II):II214.Google Scholar
  19. 19.
    Wexler LF, Weinberg EO, Ingwall JS, Apstein CS (1986). Acute alterations in diastolic left ventricular chamber distensibility: Mechanistic differences between hypoxia and ischemia in isolated perfused rabbit and rat hearts. Circ Res 59:515–528.PubMedCrossRefGoogle Scholar
  20. 20.
    MacKinnon R, Gwathmey JK, Morgan JP (1987). Differential effects of reoxygenation on intracellular calcium and isometric tension. Pflügers Arch 409: 448–453.PubMedCrossRefGoogle Scholar
  21. 21.
    Serizawa T, Vogel WM, Apstein CS, Grossman W (1981). Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia. J Clin Invest 68: 92–102.CrossRefGoogle Scholar
  22. 22.
    Vogel WM, Apstein CS, Briggs LL, Gaasch WH, Ahn J (1982). Acute alterations in left ventricular diastolic chamber stiffness: Role of the “erectile” effect of coronary arterial pressure and flow in normal and damaged hearts. Circ Res 51:465–478.PubMedCrossRefGoogle Scholar
  23. 23.
    Rovetto MJ, Whitmer JT, Neely JR (1973). Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat hearts. Cir Res 32:699–711.CrossRefGoogle Scholar
  24. 24.
    Steenbergen C, Murphy E, Watts JA, London RE (1990). Correlation between cytosolic free calcium contracture, ATP and irreversible ischemic injury in perfused rat heart. Circ Res 66:135–146.PubMedCrossRefGoogle Scholar
  25. 25.
    Blanchard EM, Solaro RJ (1984). Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. 55:382–391.Google Scholar
  26. 26.
    Fabiato A, Fabiato F (1978). Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol (Lond) 276:233–255.Google Scholar
  27. 27.
    Orchard CH, Houser SR, Kort AA, Bahinski A, Capogrossi MC, Lakatta EG (1987). Acidosis facilitates spontaneous sarcoplasmic reticulum Ca2+ release in rat myocardium. J Gen Physiol 90:145–165.PubMedCrossRefGoogle Scholar
  28. 28.
    Herzig JW, Peterson JW, Ruegg JC, Solaro JR (1981). Vanadate and phosphate ions reduce tension and increase cross-bridge kinetics in chemically skinned heart muscle. Biochim Biophys Acta 672:191–196.PubMedCrossRefGoogle Scholar
  29. 29.
    Bing OHL, Keefe JF, Wolk MJ, Finkelstein LJ, Levine HJ (1971). Tension prolongation during recovery from myocardial hypoxia. J Clin Invest 50: 660–666.PubMedCrossRefGoogle Scholar
  30. 30.
    MacKinnon R, Gwathmey JK, Morgan JP (1987). Differential effects of reoxygenation on intracellular calcium and isometric tension. Pflügers Arch 409: 448–453.PubMedCrossRefGoogle Scholar
  31. 31.
    Miyata H, Lakatta EG, Stern MD, Silverman HS (1992). Relation of mitochondrial and cytosolic free calcium to cardiac myocyte recovery after exposure to anoxia. Circ Res 71:605–613.PubMedCrossRefGoogle Scholar
  32. 32.
    Amende I, Bentivegna LA, Zeind AJ, Wenzlaff P, Grossman W, Morgan JP (1992). Intracellular calcium and ventricular function: Effects of nisoldipine on global ischemia in the isovolumic, coronary-perfused heart. J Clin Invest 89:2060–2065.PubMedCrossRefGoogle Scholar
  33. 33.
    Harada K, Meuse AJ, Franklin A, Johnson RG, Grossman W, Morgan JP (1991). Acidosis and hyper-natremia enhance postischemic recovery of excitation-contraction coupling. Circulation 84 (Suppl II):665.Google Scholar
  34. 34.
    Harada K, Franklin A, Johnson RG, Grossman W, Morgan JP (1992). Na+/H+; Na+/Ca2+ exchange enhance and ATP-sensitive K+ channels ameliorate cell Ca2+ rise in ischemia. Circulation 86(Suppl I): I478.Google Scholar
  35. 35.
    Braunwald E, Kloner RA (1982). The stunned myocardium: Prolonged postischemic ventricular dysfunction. Circulation 66:1146–1149.PubMedCrossRefGoogle Scholar
  36. 36.
    Heyndrickx GR, Millard RW, McRitchie JR, Maroko PK, Vatner SF (1989). Regional myocardial function and electrophysiological alterations after brief coronary artery occlusion therapy on regional myocardial function and geometry of humans: A tomographic assessment using two-dimensional echocardiography. Am Coll Cardiol 13:1506–1513.CrossRefGoogle Scholar
  37. 37.
    Touchstone DA, Beller GA, Nygaard TW, Tedesco C, Kaul S (1989). Effects of myocardial intravenous reperfusion therapy on regional myocardial function and geometry of humans. J Am Coll Cardiol 13: 1506–1513.PubMedCrossRefGoogle Scholar
  38. 38.
    Kusuoka H, Korestune Y, Chacko VP, Weisfeldt ML, Marban E (1990). Excitation-contraction coupling in postischemic myocardium: does failure of activator Ca2+ transients underline stunning? Circ Res 66: 1268–1276.PubMedCrossRefGoogle Scholar
  39. 39.
    Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E (1987). Pathophysiology and pathogenesis of stunned myocardium: Depressed Ca2+ activation of contraction as a consequence of reperfusion induced cellular calcium overload in ferret hearts. J Clin Invest 79:950–961.PubMedCrossRefGoogle Scholar
  40. 40.
    Kitakaze M, Weisman HF, Marban E (1988). Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77:685–695.PubMedCrossRefGoogle Scholar
  41. 41.
    Marban E, Kitakaze M, Koretsune Y, Yue DT, Charcko VP, Pike MM (1990). Quantification of [Ca2+]i in perfused hearts: Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ Res 66:1255–1267.PubMedCrossRefGoogle Scholar
  42. 42.
    Carrozza JP Jr, Bentivegna LA, Williams CP, Kuntz RE, Grossman W, Morgan JP (1992). Decreased myofilament responsiveness in myocardial stunning follows transient calcium overload during ischemia and reperfusion. Circ Res 71:1334–1340.PubMedCrossRefGoogle Scholar
  43. 43.
    Becker LC, Levine JH, DiPaula AF, Guarnieri T, Aversano T (1986). Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J Am Coll Cardiol 7:580–589.PubMedCrossRefGoogle Scholar
  44. 44.
    Krause SM, Jacobus WE, Becker LC (1989). Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic “stunned” myocardium. Circ Res 65:526–530.PubMedCrossRefGoogle Scholar
  45. 45.
    Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, Marban E (1990). Excitation-contraction coupling in postischemic myocardium: Does failure of activator Ca2+ transients underlie stunning? Circ Res 66: 1268–1276.PubMedCrossRefGoogle Scholar
  46. 46.
    Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E (1987). Pathophysiology and pathogenesis of stunned myocardium: Depressed Ca2+ activation of contraction as a consequence of reperfusion-induced cellular calcium overload in ferret hearts. J Clin Invest 79:950–961.PubMedCrossRefGoogle Scholar
  47. 47.
    Morgan JP (1991). Mechanisms of disease: Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 325:625–632.PubMedCrossRefGoogle Scholar
  48. 48.
    Bentivegna LA, Ablin LW, Kihara Y, Morgan JP (1991). Altered calcium handling in left ventricular pressure overload hypertrophy as detected with aequorin in the isolated, perfused ferret heart. Circ Res 69:1538–1545.PubMedCrossRefGoogle Scholar
  49. 49.
    Grossman W, Barry WH (1980). Diastolic pressure-volume relations in the diseased heart. Fed Proc 39:148–155.PubMedGoogle Scholar
  50. 50.
    Cunningham MJ, Apstein CS, Weinberg EO, Lorell BH (1989). Deleterious effects of ouabain on myocardial function during hypoxia. Am J Physiol 256:H681-H687.PubMedGoogle Scholar
  51. 51.
    Lorell BH, Wexler L, Momomura S, Weinberg EO, Ingwall JS, Apstein CS (1988). Enhanced sensitivity to hypoxia-induced diastolic dysfunction in pressure overload left ventricular hypertrophy in the rat: Role of high energy phosphate depletion. Circ Res 62: 766–775.PubMedCrossRefGoogle Scholar
  52. 52.
    Cunningham MJ, Apstein CS, Weinberg EO, Vogel WM, Lorell BH (1990). Influence of glucose and insulin on the exaggerated diastolic and systolic dysfunction of hypertrophied rat hearts during hypoxia. Circ Res 66:406–415.PubMedCrossRefGoogle Scholar
  53. 53.
    Eichhorn P, Grimm J, Koch R, Hess O, Carroll J, Krayenbuehl HP (1983). Left ventricular relaxation in patients with left ventricular hypertrophy secondary to aortic valve disease. Circulation 65:1395–1404.CrossRefGoogle Scholar
  54. 54.
    Paulus WJ, Lorell BH, Craig WE, Wynne J, Murgo JP, Grossman W (1993). Comparison of the effects of nitroprusside and nifedipine on diastolic properties in patients with hypertrophic cardiomyopathy: Alterated left ventricular loading or improved muscle inactivation? J Am Coll Cardiol 2:379–386.Google Scholar
  55. 55.
    Lorell BH, Paulus WJ, Grossman W, Wynne J, Cohn PF (1982). Modification of abnormal left ventricular diastolic properties by nifedipine in patients with hypertrophic cardiomyopathy. Circulation 65: 499–507.PubMedCrossRefGoogle Scholar
  56. 56.
    Topol EJ, Traill TA, Fortuin NJ (1985). Hypertensive hypertrophic cardiomyopathy of the elderly. N Engl J Med 312:277–283.PubMedCrossRefGoogle Scholar
  57. 57.
    Hanrath P, Mathey DG, Seigert R, Blefield W (1980). Left ventricular relaxation and filling patterns in different forms of left ventricular hypertrophy: An echocardiographic study. Am J Cardiol 45:15–23.PubMedCrossRefGoogle Scholar
  58. 58.
    Gaasch WH, Zile MR, Hoshino PK, Weinberg EO, Rhodes DR, Apstein CS (1990). Tolerance of the hypertrophic heart to ischemia: Studies in compensated and failing dog hearts with pressure overload hypertrophy. Circulation 81: 1644–1653.PubMedCrossRefGoogle Scholar
  59. 59.
    Sink JD, Pellom GL, Currie WD, Hill RC, Olsen CO, Jones RN, Wechesler AS (1981). Response of hypertrophied myocardium in ischemia: Correlation with biochemical and physiological parameters. J Thorac Cardivoasc Surg 81:865–872.Google Scholar
  60. 60.
    Peyton RB, VanTright P, Pellom GL, Jones RM, Sink JD, Wechsler AS (1982). Improved tolerance to ischemia in hypertrophied myocardium by preischemic enhancement of adenoine triphosphate. J Thorac Cardiovasc Surg 84:11–15.PubMedGoogle Scholar
  61. 61.
    Peyton RB, Jones RN, Attarian D, Sink JD, VanTright P, Currie WD, Wechsler AS (1982). Depressed high-energy phosphate content in hypertrophied ventricles of animals and man: The biologic basis for increased sensitivity to ischemic injury. Am J Surg 196:278–284.Google Scholar
  62. 62.
    Menasche P, Grousset C, Apstein CS, Mous C, Piwnica A (1985). Increased injury of hypertrophied myocardium with ischemic arrest: Preservation with hypothermia and cardioplegia. Am Heart J 110: 1204–1209.PubMedCrossRefGoogle Scholar
  63. 63.
    Kihara Y, Morgan JP (1991). Intracellular calcium and ventricular fibrillation. Circ Res 68:1378–1389.PubMedCrossRefGoogle Scholar
  64. 64.
    Zipes DP (1975). Electrophysiological mechanisms involved in ventricular fibrillation. Circulation 52 (Suppl III):III120–III130.PubMedGoogle Scholar
  65. 65.
    Fishch C, Knoebel SB (1985). Digitalis cardiotoxicity. J Am Coll Cardiol 5:91A–98A.PubMedCrossRefGoogle Scholar
  66. 66.
    Kass RS, Lederer WJ, Tsien RW, Weingard R (1975). Role of calcium ions in transient inward current and after contractions induced by strophanthidin in cardiac Purkinje fibers. J Physiol (Lond) 281:187–208.Google Scholar
  67. 67.
    Clusin WT, Buchbinder M, Harrison DC (1983). Calcium overload, “injury” current, and early ischemic cardiac arrhythmias: A direct connection. Lancent 1:272–273.CrossRefGoogle Scholar
  68. 68.
    Coetzee WA, Opie LH (1987). Effects of components of ischemia and metabolic inhibition on delayed after-depolarizations in guinea pig papillary muscle. Circ Res 61:157–165.PubMedCrossRefGoogle Scholar
  69. 69.
    Kusuoka H, Jacobus WE, Marban E (1988). Calcium oscillations in digitalis-induced ventricular fibrillation: Pathogenic role and metabolic consequences in isolated ferret hearts. Circ Res 62:609–619.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • James P. Morgan
  • Kazumasa Harada
  • Achim Meissner
  • Christian Williams
  • Joseph P. Carrozza
  • Lisa A. Bentivegna
  • Yasuki Kihara
  • William Grossman

There are no affiliations available

Personalised recommendations