Advertisement

Turbulence pp 139-146 | Cite as

Wavelet Analysis

(of single-point turbulence data)
  • A. Arneodo
  • E. Bacry
  • J. F. Muzy
Part of the NATO ASI Series book series (NSSB, volume 341)

Abstract

The central problem of three-dimensional fully developed turbulence is the energy cascading process. It has resisted all attempts at a full understanding or mathematical formulation. The main reasons for this failure are related to the large hierarchy of scales involved, the highly nonlinear character of the Navier-Stokes equations and the spatial intermit-tency of the dynamical active regions[1,2] In this context, statistical and scaling properties have been the basic concepts used to characterize turbulent flows. One of the striking signatures of the so-called intermittency phenomenon is the nongaussian statistics at small scales.

Keywords

Cascade Model Inertial Range Integral Length Scale Velocity Increment Singularity Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, vol II (MIT Press, 1975).Google Scholar
  2. [2]
    U. Frisch and S.A. Orszag, “Turbulence: Challenges for Theory and Experiments”, Physics Today (1990), p.24.Google Scholar
  3. [3]
    A.N. Kolmogorov, C.R. Acad. Sci. USSR 30, 301 (1941).Google Scholar
  4. [4]
    B.B. Mandelbrot, J. Fluid Mech. 62, 331 (1974); The Fractal Geometry of Nature (Freeman, San Francisco, 1982).ADSMATHCrossRefGoogle Scholar
  5. [5] (a)
    T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia and B.I. Shraiman, Phys. Rev. A 33, 1141 (1986); (b) P. Collet, J. Lebowitz and A. Porzio, J. Stat. Phys. 47, 609 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6] (a)
    R.R. Prasad, C. Meneveau and K.R. Sreenivasan, Phys. Rev. Lett. 61, 74 (1989); (b) P. Miller and P. Dimotakis, Phys. Fluids A3, 168 (1991).ADSCrossRefGoogle Scholar
  7. [7]
    C. Meneveau and K.R. Sreenivasan, J. Fluid Mech. 224, 429 (1991).ADSMATHCrossRefGoogle Scholar
  8. [8] (a)
    F. Anselmet, Y. Gagne, E.J. Hopfin-ger and R.A. Antonia, J. Fluid. Mech. 140, 63 (1984); (b) Y. Gagne, Thesis, University of Grenoble (1987); (c) B. Castaing, Y. Gagne and E.J. Hopfinger, Physica D 46, 177(1990).ADSCrossRefGoogle Scholar
  9. [9]
    G. Parisi and U. Frisch, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. Ghil, R. Benzi and G. Parisi (North-Holland, Amsterdam, 1985), p. 84.Google Scholar
  10. [10]
    A.M. Obukhov, J. Fluid Mech. 13, 77 (1962)MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962)MathSciNetADSMATHCrossRefGoogle Scholar
  12. [12]
    E. Novikov and R.W. Stewart, Izv. Akad. Nauk. SSSR, Geofiz. 3, 408 (1964)Google Scholar
  13. [13]
    U. Frisch, P.L. Sulem and M. Nelkin, J. Fluid. Mech. 87, 719 (1978).ADSMATHCrossRefGoogle Scholar
  14. [14] (a)
    I. Hosokawa and K. Yamamoto, Phys. Fluid A4, 457 (1991); (b) S.T. Thoroddsen and C.W. Van Atta, Phys. Fluid A4, 2592 (1992); (c) S. Chen, G.D. Doolen, R.H. Kraichnan and Z. She, Phys. Fluid A5, 458 (1992).Google Scholar
  15. [15] (a)
    G. Stolovitsky, P. Kailasnath and K.R. Sreenivasan, Phys. Rev. Lett. 69, 1178 (1992); (b) J. O’Neil and C. Mene-veau, preprint (1992); (c) Y. Gagne, M. Marchand and B. Castaing, J. Phys. II France [bd4], 1 (1994).ADSCrossRefGoogle Scholar
  16. [16]
    E. Aurell, U. Frisch, J. Lutsko and M. Vergassola, J. Fluid Mech. 238, 467 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    A. Bershadskii and A. Tsinober, Phys. Rev. E48, 282 (1993).ADSGoogle Scholar
  18. [18]
    J.F. Muzy, E. Bacry and A. Arneodo, Phys. Rev. E47, 875 (1993).ADSGoogle Scholar
  19. [19] (a)
    J.F. Muzy, E. Bacry and A. Arneodo, Phys. Rev. Lett. 67, 3515 (1991); (b) A. Arneodo, E. Bacry and J.F. Muzy, Wavelets and Turbulence (Springer, Berlin, 1992) to appear; (c) E. Bacry, J.F. Muzy and A. Arneodo, J. Stat. Phys. 70,635(1993).ADSCrossRefGoogle Scholar
  20. [20] (a)
    Wavelets, edited by J.M. Combes, A. Grossmann and P. Tchamitchian, (Springer, Berlin, 1989); (b)Les Ondeleites en 1989, edited by P.G. Lemarié (Springer, Berlin, 1990); (c)Wavelets and Their Applications, edited by Y. Meyer (Springer, Berlin, 1992); (d) Progress in Wavelet Analysis and Applications, edited by Y. Meyer and S. Roques (Editions Frontieres, Gif/Yvettte, 1993).Google Scholar
  21. [21] (a)
    A. Arneodo, G. Grasseau and M. Holschneider, Phys. Rev. Lett. 61, 2281 (1988); in ref.[20]a, p. 182; (b) A. Arneodo, F. Argoul and G. Grasseau, inNonlinear Dynamics, edited by G. Turchetti (World Scientific, Singapore, 1988) p. 130; (c) A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray, E. Freysz, G. Grasseau, J.F. Muzy and B. Pouligny, in ref. [20]c, p. 286.MathSciNetADSCrossRefGoogle Scholar
  22. [22] (a)
    S. Jaffard, C. R. Acad. Sci. Paris 308, 79 (1989). (b) M. Holschneider and P. Tchamitchian, in ref [20]b, p. 102.MathSciNetMATHGoogle Scholar
  23. [23] (a)
    F. Argoul, A. Arneodo, G. Grasseau, Y. Gagne, E.J. Hopfinger and U. Frisch, Nature 338, 51 (1989); (b) E. Bacry, A. Arneodo, U. Frisch, Y. Gagne and E.J. Hopfinger, in Turbulence and Coherent Structures, edited by M. Lesieur and O. Metais (Kluwer, Dordrecht, 1991), p. 203.CrossRefGoogle Scholar
  24. [24] (a)
    M. Vergassola and U. Frisch, Phys-ica D 54, 58 (1991); (b) M. Vergassola, R.Benzi, L.Biferale and D.Pisarenko, J. Phys. A 26, 6093 (1993).MathSciNetADSMATHCrossRefGoogle Scholar
  25. [25]
    S. Mallat and W.L. Hwang, IEEE Trans. on Inf. Th. 38, 617 (1992).MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    M. Farge, Annu. Rev. Fluid. Mech. 24, 395 (1992).MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    S. Douady, Y. Couder and M. Brachet, Phys. Rev. Lett. 67, 983 (1991).ADSCrossRefGoogle Scholar
  28. [28] (a)
    E. Siggia, J. Fluid Mech 107, 375 (1981); (b) M.E. Brachet, D.I. Meiron, S.A. Orzag, B.G. Nickel, R.H. Morf and U. Frisch, J. Fluid. Mech. 130, 411 (1983); (c) Z.S. She, E. Jackson and S.A Orszag, Nature 344, 6263 (1990); 344, 226 (1990); (d) A. Vincent and M. Meneguzzi, J. Fluid Mech. 255, 1 (1991); (e) M.E. Brachet, C. R. Acad. Sci. Paris 311, 775 (1990); Fluid Dyn., 8, 1 (1991).ADSMATHCrossRefGoogle Scholar
  29. [29]
    B.B. Mandelbrot, Pure Appl. Geophys. 131, 5 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Arneodo
    • 1
  • E. Bacry
    • 2
  • J. F. Muzy
    • 1
  1. 1.Centre de Recherche Paul PascalPessacFrance
  2. 2.UFR de MathématiquesUniversité de Paris VIIParis cedex 05France

Personalised recommendations