Anti-Retroviral and Pharmacological Properties of 9-(2-Phosphonylmethoxyethyl)Adenine (PMEA)

  • J. Balzarini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 370)


Acyclic nucleoside phosphonates (ANP) represent a structural class of compounds that contain a phosphonate group linked to an acyclic (alkyl) side chain of purine or pyrimidine bases.1-3 Due to the unusual direct linkage between the phosphor atom of the phosphonate moiety and a carbon atom of the acyclic side chain, the ANP derivatives are resistant to phosphorolytic cleavage by cellular esterases. Therefore, ANP derivatives are both enzymatically and chemically stable and are taken up by the cells in an unaltered intact form. Several subclasses of ANP can be considered (Fig. 1): (i) HPMP derivatives1, 4 [prototype compound: HPMPA, (S)-(3-hydroxy-2-Phosphonylmethyl propyl)adenine], (ii) PME derivatives1, 4, 5 [prototype compound: PMEA, 9-(2-Phosphonylmethoxyethyl)adenine], (iii) PMP derivatives6, 7 [prototype compounds: PMPA, (R)-9-(2-Phosphonylmethoxypropyl)adenine and FPMPA, (S)-9-(3-fiuoro-2-Phosphonylmethoxypropyl)adenine]. Each subclass of ANP is endowed with a specific and characteristic antiviral activity spectrum.


Simian Immunodeficiency Virus Feline Immunodeficiency Virus Purine Nucleoside Phosphorylase African Swine Fever Virus Simian Immunodeficiency Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. De Clercq, A. Holy, I. Rosenberg, T. Sakuma, J. Balzarini, and P.C. Maudgal, A novel selective broad-spectrum anti-DNA virus agent, Nature 323:464 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    A. Holy, and I. Rosenberg, Synthesis of 9-(2-phosphonylmethoxyethyl)adenine and related compounds, Collect. Czech. Chem. Commun. 52:2801 (1987).CrossRefGoogle Scholar
  3. 3.
    A. Holy, I. Votruba, A. Merta, J. Cemy, J. Vesely, J. Vlach, K. Sedivá, I. Rosenberg, M. Otmar, H. Hrebabecky, M. Travnicek, V. Vonka, R. Snoeck, and E. De Clercq, Acyclic nucleotide analogues: synthesis, antiviral activity and inhibitory effects on some cellular and virus-encoded enzymes in vitro, Antiviral Res. 13:295 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    E. De Clercq, T. Sakuma, M. Baba, R. Pauwels, J. Balzarini, I. Rosenberg, and A. Holy, Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines, Antiviral Res. 8:261 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    R. Pauwels, J. Balzarini, D. Schols, M. Baba, J. Desmyter, I. Rosenberg, A. Holy, and E. De Clercq, Phosphonylmethoxyethyl purine derivatives: a new class of anti-human immunodeficiency virus agents, Antimicrob. Agents Chemother. 32:1025 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Balzarini, A. Holy, J. Jindrich, H. Dvorakova, Z. Hao, R. Snoeck, P. Herdewijn, D.G. Johns, and E. De Clercq, 9-[(2RS)-3-fluoro-2-phosphonylmethoxypropyl] derivatives of purines: a class of highly selective antiretroviral agents in vitro and in vivo, Proc. Natl. Acad. Sci. USA 88:4961 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Balzarini, A. Holy, J. Jindrich, L. Naesens, R. Snoeck, D. Schols, and E. De Clercq, Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine, Antimicrob. Agents Chemother. 37:332 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Yokota, K. Konno, S. Shigeta, A. Holy, J. Balzarini, and E. De Clercq, Inhibitory effects of acyclic nucleoside phosphonate analogues on hepatitis B virus DNA synthesis in HB611 cells, Antiviral Chem. Chemother. 5:57 (1994).Google Scholar
  9. 9.
    R.A. Heijtink, G.A. De Wilde, J. Kruining, L. Berk, A. Holy, J. Balzarini, E. De Clercq, and S.W. Schalm, Antiviral activity of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) on human and duck hepatitis B virus infection, Antiviral Res. 21:141 (1993).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Balzarini, J. Kruining, R. Heijtink, and E. De Clercq, Comparative anti-retrovirus and antihepadnavirus activity of three different classes of nucleoside phosphonate derivatives, Antiviral. Chem. Chemother., in press (1994).Google Scholar
  11. 11.
    J. Balzarini, L. Naesens, J. Slachmuylders, H. Niphuis, I. Rosenberg, A. Holy, H. Schellekens, and E. De Clercq, 9-(2-Phosphonylmethoxyethyl)adenine (PMEA) effectively inhibits simian immunodeficiency virus (SIV) infection in Rhesus monkeys, AIDS 5:21 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Egberink, M. Borst, H. Niphuis, J. Balzarini, H. Neu, H. Schellekens, E. De Clercq, M. Horzinek, and M. Koolen, Suppression of feline immunodeficiency virus infection in vivo by 9-(2-phosphonomethoxyethyl)adenine, Proc. Natl. Acad. Sci. USA 87:3087 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    K. Hartmann, A. Donath, B. Beer, H.F. Egberink, M.C. Horzinek, H. Lutz, G. Hoffmann-Fezer, I. Thum, and S. Thefeld, Use of two virustatica (AZT, PMEA) in the treatment of FIV and FeLV seropositve cats with clinical symptoms, Vet. Immunol. Immunopathol. 35:167 (1993).CrossRefGoogle Scholar
  14. 14.
    K. Hartmann, J. Balzarini, J. Higgins, E. De Clercq, and N.C. Pedersen, In vitro activity of acyclic nucleoside phosphonate derivatives against feline immunodeficiency virus in Crandell feline kidney cells and feline peripheal blood lymphocytes, Antiviral Chem. Chemother. 5:13 (1994).Google Scholar
  15. 15.
    J.D. Gangemi, R.M. Cozens, E. De Clercq, J. Balzarini, and H.-K. Hochkeppel, 9-(2-Phosphonylmethoxyethyl)adenine in the treatment of murine acquired immunodeficiency disease and opportunistic herpes simplex virus infections, Antimicrob. Agents Chemother. 33:1864 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Thormar, J. Balzarini, A. Holy, J. Jindrich, I. Rosenberg, Z. Debyser, J. Desmyter, and E. De Clercq, Inhibition of visna virus replication by 2’, 3’-dideoxynucleosides and acyclic nucleoside phosphonate analogues, Antimicrob. Agents Chemother. 37:2540 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Balzarini, L. Naesens, P. Herdewijn, I. Rosenberg, A. Holy, R. Pauwels, M. Baba, D.G. Johns, and E. De Clercq, Marked in vivo antiretrovirus activity of 9-(2-phosphonylmethoxyethyl)adenine, a selective anti-human immunodeficiency virus agent, Proc. Natl. Acad. Sci. USA 86:332 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    L. Naesens, J. Balzarini, A. Holy, I. Rosenberg, and E. De Clercq, Antiretroviral efficacy of 9-(2-phosphonylmethoxyethyl)adenine and 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine in mice infected with Friend leukemia virus (abstract), UCLA Symposia on Molecular Biology and Cellular Biology — HIV and AIDS: Pathogenesis, Therapy and Vaccine, Keystone, Colorado, USA, March 31-April 6, 1990, J. Cell. Biochem. 14D (Suppl.): 140 (1990).Google Scholar
  19. 19.
    E.A. Hoover, J.P. Ebner, N.S. Zeidner, and J.I. Mullins, Early therapy of feline leukemia virus infection (FeLV-FAIDS) with 9-(2-phosphonylmethoxyethyl)adenine (PMEA), Antiviral Res. 16:77 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Naesens, J. Balzarini, and E. De Clercq, Single-dose administration of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) and 9-(2-phosphonylmethoxyethyl)-2,6-diaminopurine (PMEDAP) in the prophylaxis of retrovirus infection in vivo, Antiviral Res. 16:53 (1991).PubMedCrossRefGoogle Scholar
  21. 21.
    G. Palú, S. Stefanelli, M. Rassu, C. Parolin, J. Balzarini, and E. De Clercq, Cellular uptake of phosphonylmethoxyalkylpurine derivatives, Antiviral Res. 16:115 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    K.L. Prus, E.L. Hill, and M.N. Ellis, The transport of 9-(2-phosphonylmethoxyethyl)adenine (PMEA) into Vero cells, Fourth Int. Conf. Antiviral Res., New Orleans, Louisiana, USA, April 21-26, 1991, Antiviral Res. Suppl. 1:144, abstract no. 188 (1991).CrossRefGoogle Scholar
  23. 23.
    J. Balzarini, Z. Hao, P. Herdewijn, D.G. Johns, and E. De Clercq, Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound, Proc. Natl. Acad. Sci. USA 88:1499 (1991).PubMedCrossRefGoogle Scholar
  24. 24.
    J.J. Bronson, H.-T. Ho, H. De Boeck, K. Woods, I. Ghazzouli, J.C. Martin, and M.J.M. Hitchcock, Biochemical pharmacology of acyclic nucleotide analogues, Ann. N.Y. Acad. Sci. 616:398 (1990).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Merta, I. Votruba, J. Jindrich, A. Holy, T. Cihlar, I. Rosenberg, M. Otmar, and H.Y. Tchaou, Phosphorylation of 9-(2-phosphonomethoxyethyl)adenine and 9-(S)-(3-hydroxy-2-phosphonomethoxypropyl)adenine by AMP (dAMP) kinase from L1210 cells, Biochem. Pharmacol. 44:2067 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Balzarini, and E. De Clercq, 5-Phosphoribosyl 1-pyrophosphate synthetase converts the acyclic nucleoside phosphonates 9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 9-(2-phosphonylmethoxyethyl)adenine directly to their antivirally active diphosphate derivatives, J. Biol. Chem. 266:8686 (1991).PubMedGoogle Scholar
  27. 27.
    J. Balzarini, and E. De Clercq, Conversion of acyclic nucleoside phosphonates to their diphosphate derivatives by 5-phosphoribosyl-l-pyrophosphate (PRPP) synthetase, in: Purine and Pyrimidine Metabolism in Man VII, Part A, R.A. Harkness, G. Elion, and N. Zöllner, eds., Plenum Press, New York, p. 29 (1991).CrossRefGoogle Scholar
  28. 28.
    J. Cerny, I. Votruba, V. Vonka, I. Rosenberg, M. Otmar, and A. Holy, Phosphonylmethyl ethers of acyclic nucleoside analogues: inhibitors of HSV-1 induced ribonucleotide reductase, Antiviral Res. 13:253 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Sedivá, A.V. Ananiev, I. Votruba, A. Holy, and I. Rosenberg, Inhibition of purine nucleoside Phosphorylase by phosphonylmethoxyalkyl analogues of nucleotides, Int. J. Purine Pyrimidine Res. 2:35–39 (1991).Google Scholar
  30. 30.
    J. Balzarini, and E. De Clercq, Assay method for monitoring the inhibitory effects of antimetabolites on the activity of inosinate dehydrogenase in intact human CEM lymphocytes, Biochem. J. 287:785 (1992).PubMedGoogle Scholar
  31. 31.
    I. Votruba, M. Trávnícek, I. Rosenberg, M. Otmar, A. Merta, H. Hrebabecky, and A. Holy, Inhibition of avian myeloblastosis virus reverse transcriptase by diphosphates of acyclic phosphonylmethyl nucleotide analogues, Antiviral Res. 13:287 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. Balzarini
    • 1
  1. 1.Rega Institute for Medical ResearchLeuvenBelgium

Personalised recommendations