Inosine 5’-Monophosphate Dehydrogenase as a Chemotherapeutic Target

  • Trevor J. Franklin
  • Gwynneth Edwards
  • Philip Hedge
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 370)


Inosine 5’-monophosphate, EC (IMPDH) catalyzes the conversion of IMP to XMP utilizing NAD as a proton acceptor. Its role in catalyzing the rate determining step in the biosynthesis of GTP1 gives IMPDH a position of central importance in cellular activity because of the myriad activities of GTP in biosynthesis and cellular regulation. The activity of IMPDH is much higher in proliferating tissues, both normal and malignant 2, 3 suggesting that the salvage of guanine by hypoxanthine-guanine phosphoribosyltransferase is probably inadequate to satisfy the requirements of dividing cells for guanine nucleotides.


Mycophenolate Mofetil Guanine Nucleotide Respiratory Syncytial Virus Infection38 Phorbol Myristate Acetate Mycophenolic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G Weber, H. Nakamura, Y. Natsumeda, T. Szekeres and M. Nagai, Regulation of GTP synthesis. Advan. Enzyme Regul. 32: 57(1992).CrossRefGoogle Scholar
  2. 2.
    R.C. Jackson, H.P. Morris and G. Weber, Partial purification, properties and regulation of inosine 5’-monophosphate dehydrogenase in normal and malignant rat tissues, Biochem. J. 166: 7 (1977)Google Scholar
  3. 3.
    R.C. Jackson, G. Weber and H.P. Morris, IMP dehydrogenase, an enzyme linked with proliferation and malignancy. Nature 256: 331 (1975).PubMedCrossRefGoogle Scholar
  4. 4.
    D.A. Cooney H.N. Jarayam, G. Gebeyehu, CR. Betts, J.A. Kelley, V.E. Marquez and D.G. Johns, The conversion of 2-ß-D-ribofuranosylthiazole-4-carboxamide to an anlogue of NAD with potent IMP dehydrogenase inhibitory properties. Biochem. Pharmcol. 31: 2133 (1982).CrossRefGoogle Scholar
  5. 5.
    K. Gharehbaghi, K.D. Pauli, J.A. Kelley, J.J. Barchi, J.E. Marquez, D.A. Cooney, A. Monks, D. Scudiero, K. Krohn and H.N. Jarayam, Cytotoxicity and characterization of an active metabolite of benzamide riboside, a novel inhibitor of IMP dehydrogenase. Int.J.Cancer 56:892 (1994)PubMedCrossRefGoogle Scholar
  6. 6.
    B.M. Goldstein, J.E. Bell and V.E. Marquez, Dehydrogenase binding by tiazofurin anabolites, J.Med. Chem. 33:1123 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    T.J. Franklin and J.M. Cook, The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem.J. 113:515(1969).PubMedGoogle Scholar
  8. 8.
    H.W. Sollinger, M.H. Deierhol, F.O. Belzer, A.G. Diethelm and R.S. Kauffman, RS-61443 — a phase I clinical trial and pilot rescue study, Transplantation 53:428 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Natsumeda, S. Ohno, H. Kawasaki, Y. Konno, G. Weber and K. Suzuki, Two distinct cDNAs for human IMP dehydrogenase. J. BioL Chem. 265:5292 (1990)PubMedGoogle Scholar
  10. 10.
    L.C. Antonino, K. Sträub and J.C. Wu, Probing the active site of human IMP dehydrogenase using halogenated purine riboside 5’-monophosphate and covalent modification reagents, Biochemistry 33:1760(1994)PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Konno, Y. Natsumeda, M. Nagai, Y. Yamaji, S. Ohno, K. Suzuki and G. Weber, Expression of human IMP dehydrogenase Types I and II in Escherichia coli and distribution in human normal and leukemic cell lines, J. BioL Chem. 266:506 (1991).PubMedGoogle Scholar
  12. 12.
    J.S. Dayton, T. Lindsten, C.B. Thompson and B.S. Mitchell, Effects of human T lymphocyte activation on inosine monophosphate dehydrogenase expression, J. Immunol. 752:984 (1994).Google Scholar
  13. 13.
    D.A. Glesne, F.R. Collart and E. Huberman, Regulation of IMP dehydrogenase gene expression by its end products, guanine nucleotides, Mol.Cell.Biol. 11:5417 (1991).PubMedGoogle Scholar
  14. 14.
    S.F. Carr, E. Papp, J.C. Wu and Y. Natsumeda, Characterization of human Type I and Type II IMP dehydrogenase, J. Biol Chem 268:27286 (1993).PubMedGoogle Scholar
  15. 15.
    S.D. Hodges, E. Fung, B.S. Renaux and F.F. Snyder, Increased activity, amount and altered kinetic properties of IMP dehydrogenase from mycophenolic acid-resistant neuroblastoma cells, J. Biol Chem 264: 18137 (1989).PubMedGoogle Scholar
  16. 16.
    H.J Gilbert, CR. Lowe and W.T. Drabble, Inosine 5’-monophosphate dehydrogenase in Escherichia coli, Biochem.J. 183:481 (1979)PubMedGoogle Scholar
  17. 17.
    D.J. Hupe, B. Azzolina and N.D. Behrens, IMP dehydrogenase from the intracellular parasite Eimeria tenella and its inhibition by mycophenolic acid, J.Biol.Chem 261:8363 (1986)PubMedGoogle Scholar
  18. 18.
    L. Hedstrom and C.C. Wang, Mycophenolic acid and thiazole adenine dinucleotide inhibition of Tritrichomonas foetus inosine 5’-monophosphate dehydrogenase: implication on enzyme mechanism, Biochemistry, 29:849 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Ikegami, Y. Natsumeda and G. Weber, Purification of IMP dehydrogenase from rat hepatoma 3924A, Life Sciences 40:2277 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    M.B. Cohen, J. Maybaum and W. Sadee, Guanine nucleotide depletion and toxicity in mouse T lymphoma (S-49) cells, J.Biol.Chem. 256:8713 (1981).PubMedGoogle Scholar
  21. 21.
    T.J. Franklin and V.N. Jacobs, In preparation, (1994).Google Scholar
  22. 22.
    O. Itoh, S. Kuroiwa, S. Atsumi, K. Umezawa, T. Takeuchi and M. Hori, Induction by guanosine analogue oxanosine of reversion toward the normal phenotype of K-ras — transformed rat kidney cells, Cancer Res. 49:996 (1989).PubMedGoogle Scholar
  23. 23.
    F.R. Collart and E. Huberman, Expression of IMP dehydrogenase in differentiating III-60 cells, Blood 75:570 (1990).PubMedGoogle Scholar
  24. 24.
    K. Kiguchi, F.R. Collart, C. Henning-Chubb and E. Huberman, Induction of cell differentiation in melanoma cells by inhibitors of IMP dehydrogenase: altered patterns of IMP dehydrogenase expression and activity, Cell Growth and Differentiation 1:259 (1990).PubMedGoogle Scholar
  25. 25.
    T.J. Franklin and P.A. Twose, Reduction in β-adrenergic response of culture glioma cells following depletion of intracellular GTP, Eur.J.Biochem. 77:113 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Hata, Y. Natsumeda and G. Weber, Tiazofurin decreases Ras-GTP complex in K562 cells, Oncol.Res. 5:161 (1993).PubMedGoogle Scholar
  27. 27.
    A.C. Allison, W.J. Kowalski, C.J. Muller, R.V. Waters and E.M. Egui, Mycophenolic acid and brequinar, inhibitors of purine and pyrimidine synthesis, block the glycosylation of adhesion molecules, Transplant.Proc. 25, Suppl.2:67 (1993).Google Scholar
  28. 28.
    S.B. Carter, T.J. Franklin, D.F. Jones, B.J. Leonard, S.D. Mills, R.W. Turner and W.B. Turner, Mycophenolic acid; an anti-cancer compound with unusual properties, Nature 223:848 (1969).PubMedCrossRefGoogle Scholar
  29. 29.
    M.J. Sweeney, K. Gerzon, P.N. Harris, R.E. Hohnes, G.A. Poore and R.H. Williams, Experimental antitumor activity and preclinical toxicology of mycophenolic acid, Cancer Res. 32:1795 (1972).PubMedGoogle Scholar
  30. 30.
    D.S. Platt, personal communication.Google Scholar
  31. 31.
    W.W. Epinette, M.D. Cohen, C.M. Cohen, E.L. Jones and M.C. Greist, Mycophenolic acid for psoriasis, J.Am. Acad. Dermatol. 17:962 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    G.J. Tricot, H.N. Jarayam, E. Lapis, Y. Natsumeda, C.R. Nichols, P. Kneebone, N. Heerema, G. Weber and R. Hoffman, Biochemically directed therapy of leukemia with tiazofurin, a selective blocker of inosine 5’-monophosphate dehydrogenase activity, Cancer Res. 49: 3696 (1989).PubMedGoogle Scholar
  33. 33.
    Anon. Scrip 1915: 11 (1994).Google Scholar
  34. 34.
    S.B. Carter, Pharmaceutical compositions containing mycophenolic acid or a salt or ester thereof.Anti-tumour and immunosuppressive activity, UK Patent # 1,157,100 (1967).Google Scholar
  35. 35.
    A.C. Allison and E.M. Egui, Mycophenolate mofetil, a rationally designed immunosuppressive drug, Clinical Transplantation 7: 96 (1993).Google Scholar
  36. 36.
    T. Osakabe, H. Uchida, Y. Masaki, K. Sato, Y. Nakayama, M. Ohkubo, K. Kumano, T. Endo, K. Watanabe and K. Aso, Studies on immunosuppression with low-dose cyclosporine combined with mizoribine in experimental and clinical cadaveric renal allotransplantation, Transplant. Proc. 21: 1598 (1989).PubMedGoogle Scholar
  37. 37.
    R. Goldblum, Therapy of rheumatoid arthritis with mycophenolate mofetil, Clin.Exp. Rheumatol. 11(Suppl.8): S 117 (1993).Google Scholar
  38. 38.
    H-J. Liao and V. Stollar, Reversal of the antiviral activity of ribavirin against Sindbis virus in Ae. albopictus mosquito cells, Antiviral Res. 22: 285 (1993)PubMedCrossRefGoogle Scholar
  39. 39.
    J. Balzarini, A. Karlsson, L. Wang, C. Bohman, K. Horska, I. Votruba, A. Fridland, A. Van Aerschot, P. Herdewijn and E. De Clercq, Eicar (5-ethynyl-1-ß — D-ribofuranosylimidazole-4-carboxamide). A novel potent inhibitor of inosinate dehydrogenase activity and guanylate biosynthesis, J. Biol.Chem. 268: 24591 (1993).PubMedGoogle Scholar
  40. 40.
    D.L. Trump, K.D. Tutsch, J.M. Koeller and D.C. Tormey, Phase I clinical study with pharmacokinetic analysis of 2-ß-D-ribofuranosylthiazole-4-carboxamide 9NSC 286193) administered as a five-day infusion, Cancer Res. 45: 2853 (1985)PubMedGoogle Scholar
  41. 41.
    T.J. Franklin and W.P. Morris, Pharmacodynamics of the inhibition of GTP synthesis in vivo by mycophenolic acid, In press: Advan.Enzyme Regul. 34 (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Trevor J. Franklin
    • 1
  • Gwynneth Edwards
    • 2
  • Philip Hedge
    • 1
  1. 1.Cancer Research DepartmentZeneca PharmaceuticalsAlderley Park, MacclesfieldEngland
  2. 2.Department of Cell and Structural BiologyUniversity of ManchesterManchesterEngland

Personalised recommendations