Advertisement

Observed Resistance to Pyrimidine Analogs and Sensitivity to Uracil in Drosophila is attributed to Deregulation of Pyrimidine Metabolism

  • Jure Piškur
  • Leif Søndergaard
  • Zoran Gojkovic
  • Birgitte Stokbro
  • Charlotte Hjulsager
  • Jeffrey Davidson
  • Edward DeMoll
  • John Rawls
  • Erik Bahn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 370)

Abstract

Pyrimidine nucleotides play a central role in cellular metabolism and regulation. In most organisms two pathways provide pyrimidines: the de novo biosynthetic pathway and the salvage pathway. Drosophila melanogaster, the fruit fly, is an ideal organism for study of the genetic basis and regulatory mechanisms of various metabolic pathways. De novo pyrimidine biosynthesis in the fruit fly is a six-step pathway, which is catalyzed by enzymes encoded by three separate genes (Freund and Jarry, 1987; Rawls et al., 1993; Eisenberg et al., 1993). The gene rudimentary (r) is Drosophila’s equivalent of the mammalian gene for CAD (Freund and Jarry, 1987). De novo pyrimidine biosynthesis is important for the proper development of flies. However, the salvage pathway can suffice when the external supply of pyrimidines is very high (Falk and Nash, 1974).

Keywords

Mutant Allele Wild Type Allele Catabolic Pathway Salvage Pathway Pyrimidine Nucleotide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, M., 1989, “Drosophila. A Laboratory Handbook,” Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  2. Eisenberg, M., Kirkpatrick, R. and Rawls, J., 1993, Structure of the rudimentary-like gene and UMP synthase in Drosophila melanogaster, Gene 124: 263–267.PubMedCrossRefGoogle Scholar
  3. Falk, D.R. and Nash, D., 1974, Sex-linked auxotrophic and putative auxotrophic mutants of Drosophila melanogaster, Genetics 76: 755–766.PubMedGoogle Scholar
  4. Freund, J.N. and Jarry, B.P., 1987, The rudimentary gene of Drosophila melanogaster encodes four enzymic functions, J.Mol.Biol. 193:1–13.PubMedCrossRefGoogle Scholar
  5. Hodgetts, R. and Choi, A., 1974, Beta-alanine and cuticle maturation in Drosophila, Nature 252: 710–711.PubMedCrossRefGoogle Scholar
  6. Ichiba, M., Tomokuni, K. and Mori, K., 1992, Erythrocyte nuclotides in lead workers, Int.Arch.Occup.Env iron.Health, 63:419–421.CrossRefGoogle Scholar
  7. Jacobs, M., 1974, Beta-alanine and adaptation in Drosophila, J.Insect Physiol. 20: 859–866.PubMedCrossRefGoogle Scholar
  8. Lindsley, D.L. and Zimm, G.G., 1992, “The Genome of Drosophila melanogaster,” Academic Press, San Diego.Google Scholar
  9. Piskur, J., Kolbak, D., Søndergaard, L. and Pedersen, M.B., 1993, The dominant mutation Suppressor of black indicates that de novo pyrimidine biosynthesis is involved in the Drosophila tan pigmentation pathway, Mol.Gen.Genet. 241: 335–340.PubMedCrossRefGoogle Scholar
  10. Rawls, J., Kirkpatrick, R., Yang, J. and Lacy, L., 1993, The dhod gene and deduced structure of mitochondrial dihydroorotate dehydrogenase in Drosophila melanogaster, Gene 124: 191–197.PubMedCrossRefGoogle Scholar
  11. Weber, J.P., Bolin, R.J., Hixon, M.S. and Sherald, A.F., 1992, Beta-alanine transaminase activity in black and suppressor of black mutations of Drosophila melanogaster, Biochim. Biophys. Acta 1115: 181–186.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jure Piškur
    • 1
  • Leif Søndergaard
    • 1
  • Zoran Gojkovic
    • 1
  • Birgitte Stokbro
    • 1
  • Charlotte Hjulsager
    • 1
  • Jeffrey Davidson
    • 2
  • Edward DeMoll
    • 2
  • John Rawls
    • 2
  • Erik Bahn
    • 1
  1. 1.Department of GeneticsUniversity of CopenhagenCopenhagen KDenmark
  2. 2.University of KentuckyLexingtonUSA

Personalised recommendations