Skip to main content

Chemical Autopoiesis: Self-Replication of Micelles and Vesicles

  • Chapter
Advances in the Applications of Membrane-Mimetic Chemistry

Abstract

Micelles and vesicles display a few characteristic features which are present in the structures of the living. First of all, they are self-assembling, i.e. they are examples of self-organization which is under thermodynamic control. Furthermore, micelles and vesicles are bounded structures, i.e. they have a closed interface (boundary) which discriminates an inside from an outside. This boundary acts as a semipermeable membrane, in the sense that it permits the input and the output of low molecular weight compounds with a certain degree of specificity. Also, the inside defines a geometrically well distinct microcompartment, and reactions occurring inside or at the interface of the aggregates are somewhat different from those occurring in the bulk solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.H. Fendler. “Membrane Mimetic Chemistry,” John Wiley & Sons, New York (1982).

    Google Scholar 

  2. H.J. Morowitz, B. Heinz, and D.W. Deamer, The chemical logic of a minimum rotocell, Origins Life Evol. Biosphere 18: 281–287 (1988).

    Article  CAS  Google Scholar 

  3. J. Oro and A. Lazcano, A holistic precellular organization model, in: Prebiological Self Organization of Matter,“ C. Ponnamperuma and P.R. Eirich, ds., A. DEEPAK Publishing, Hampton, Virginia, pp. 11–34 (1990).

    Google Scholar 

  4. D.W. Deamer and J. Oro, Role of lipids in prebiotic structures, BioSystems 12:67–175 (1980).

    Article  Google Scholar 

  5. W.R. Hargreaves and D.W. Deamer, Origin and early evolution of bilayer embranes, in: “Light Transducing Membranes: Structure, Function, and volution,” D.W. Deamer, ed., Academic Press, New York, pp. 23–59 (1978).

    Google Scholar 

  6. J. Nagyvary and J.H. Fendler, Origin of the genetic code: a physical-chemical model of primitive codon assignments, Origins of Life. 5: 357–362 (1974).

    Article  CAS  Google Scholar 

  7. D.W. Deamer, Role of amphiphilic compounds in the evolution of membrane structure on the early earth, Origins of Life. 17: 3–25 (1986).

    Article  CAS  Google Scholar 

  8. H. Yanagawa, Y. Ogawa, K. Kojima, and M. Ito, Construction of protocellular structures under simulated primitive earth conditions, Origins Life’Evol. Biosphere. 18: 179–207 (1988).

    Article  CAS  Google Scholar 

  9. G. von Kiedrowski, Ein selbstreplizierendes Hexadesoxynucleotid, Angew. Chem. 98: 932–934 (1986).

    Article  Google Scholar 

  10. G. von Kiedrowski, B. Wlotzka, and J. Helbling, Sequenzabhängigkeit matrizengesteuerter Synthesen von Hexadesoxynucleotid-Derivaten mit 3’-5’- Pyrophosphatverknüpfung, Angew. Che. 101: 1259–1261 (1989).

    Article  Google Scholar 

  11. G. von Kiedrowski, B. Wlotzka, J. Helbling, M. Matzen, and S. Jordan, Parabolisches Wachstum eines selbstreplizierenden Hexadesoxynucleotids mit einer 3’-5’-Phosphoamidat-Bindung, Angew. Chem. 103: 456–459 (1991).

    Article  Google Scholar 

  12. J. Jr. Rebek, Molecular recognition and the development of self-replicating systems, Experientia. 47: 1096–1104 (1991).

    Article  CAS  Google Scholar 

  13. J.S. Nowick, Q. Feng, T. Tjivikua, P. Ballester, J. Jr. Rebek, Kinetic studies and modelling of a self-replicating system, J. Am. Chem. Soc. 113: 8831–8839 (1991).

    Article  CAS  Google Scholar 

  14. V. Rotello, J.-I. Hong, and J. Jr. Rebek, Sigmoidal growth in a self-replicating system, J. Am. Chem. Soc. 113: 9422–9423 (1991).

    Article  CAS  Google Scholar 

  15. F.J. Varela, H.R. Maturana, and R. Uribe, Autopoiesis: the organization of living systems, its characterization and a model, BioSystems. 5: 187–196 (1974).

    Article  CAS  Google Scholar 

  16. G.R. Fleischaker, Autopoiesis: the status of its system logic, BioSystems 22: 37–49 (1988).

    Article  CAS  Google Scholar 

  17. G.R. Fleischaker, Three models of a minimal cell, in: “Prebiological Self Organization of Matter,” C. Ponnamperuma and F.R. Eirich, eds., A. DEEPAK Publishing, Hampton, Virginia, pp. 235–247 (1990).

    Google Scholar 

  18. P.L. Luisi, Defining the transition to life: self-replicating bounded structures and chemical autopoiesis, in preparation.

    Google Scholar 

  19. P.L. Luisi and F.J. Varela, Self-replicating micelles - a chemical version of a minimal autopoietic system, Origins Life Evol. Biosphere. 19: 633–643 (1989).

    Article  CAS  Google Scholar 

  20. P.A. Bachmann, P. Walde, P.L. Luisi, and J. Lang, Self-replicating reverse micelles and chemical autopoiesis, J. Am. Chem. Soc. 112: 8200–8201 (1990).

    Article  CAS  Google Scholar 

  21. P.A. Bachmann, P. Walde, P.L. Luisi, and J. Lang, Self-replicating micelles: aqueous micelles and enzymatically driven reactions in reverse micelles, J. Am. Chem. Soc. 113: 8204–8209 (1991).

    Article  CAS  Google Scholar 

  22. P.A. Bachmann, P.L. Luisi, and J. Lang, Self-replicating reverse micelles, Chimia. 45: 266–268 (1991).

    CAS  Google Scholar 

  23. P.A. Bachmann, P.L. Luisi, and J. Lang, Autocatalytic self-replicating micelles as models for prebiotic structures, Nature, in press (1992).

    Google Scholar 

  24. P.K. Schmidli, P. Schurtenberger, and P.L. Luisi, Liposome-mediated enzymatic synthesis of phosphatidylcholine as an approach to self-replicating liposomes, J. Am. Chem. Soc. 113: 8127–8130 (1991).

    Article  CAS  Google Scholar 

  25. H. Schwegler and K. Tarumi, The “protocell”: a mathematical model of self-maintenance, BioSystems. 19: 307–315 (1986).

    Article  CAS  Google Scholar 

  26. L. Margulis and R. Guerrero, From origins of life to evolution of microbial communities: a minimalist approach, in: “Prebiological Self Organization of Matter,” C. Ponnamperuma and F.R. Eirich, eds., A. DEEPAK Publishing, Hampton, Virginia, pp. 261–278 (1990).

    Google Scholar 

  27. J. Lang, A. Jada, and A. Malliaris, Structure and dynamics of water-in-oil droplets stabilized by sodium bis(2-ethylhexyl) sulfosuccinate, J. Phys. Chem. 92: 1946–1953 (1988).

    Article  CAS  Google Scholar 

  28. J. Lang, The time-resolved fluorescence quenching method for the study of micellar systems and microemulsions: principle and limitations of the method, in:“The structure, Dynamics and Equilibrium Properties of Colloidal Systems,” D.M. Bloor and E. Wyn-Jones, eds., Kluwer, Dordrecht (1990).

    Google Scholar 

  29. A. Verbeeck and F.C. DeSchryver, Fluorescence quenching in inverse micellar systems: possibilities and limitations, Langmuir. 3: 494–500 (1987).

    Article  CAS  Google Scholar 

  30. G.D.J. Phillies, Quasielastic light scattering, Anal. Chem. 62: 1049A–1057A (1990).

    CAS  Google Scholar 

  31. M. Zulauf and H.-F. Eicke, Inverted micelles and microemulsions in the ternary system H2O/aerosol-OT/isooctane as studied by photon correlation spectroscopy, J. Phys. Chem. 83: 480–486 (1979).

    Article  CAS  Google Scholar 

  32. P. Walde and P.L. Luisi, A continuous assay for lipases in reverse micelles based on Fourier transform infrared spectroscopy, Biochemistry. 28: 3353–3360 (1989).

    Article  CAS  Google Scholar 

  33. B. Börgstrom and H.L. Brockman, eds., “Lipases”, Elsevier, Amsterdam (1984).

    Google Scholar 

  34. P. Eckwall, Composition, properties and structures of liquid crystalline phases in systems of amphiphilic compounds, in: “Advances in Liquid Crystals, Vol. 1”, G.H. Brown, ed., Academic Press, New York, pp. 1–142 (1975).

    Google Scholar 

  35. W.R. Hargreaves and D.W. Deamer, Liposomes from ionic, single-chain amphiphiles, Biochemistry. 17: 3759–3768 (1978).

    Article  CAS  Google Scholar 

  36. D.P. Cistola, J.A. Hamilton, D. Jackson, and D.M. Small, Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule, Biochemistry. 27: 1881–1888 (1988).

    Article  CAS  Google Scholar 

  37. F.J. Varela, “Principles of Biological Autonomy,” North Holland, New York (1979).

    Google Scholar 

  38. W. Li and T.H. Haines, Uniform preparations of large unilamellar vesicles containing anionic lipids, Biochemistry. 25: 7477–7483 (1986).

    Article  CAS  Google Scholar 

  39. J. Brunner, P. Skrabal, and H. Hauser, Single bilayer vesicles prepared without sonication. Physico-chemical properties, Biochim. Biophys. Acta. 455: 322–331 (1976).

    Article  CAS  Google Scholar 

  40. M. Ueno, C. Tanford, and J.A. Reynolds, Phospholipid vesicle formation using nonionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability, Biochemistry. 23: 3070–3076 (1984).

    Article  CAS  Google Scholar 

  41. P. Schurtenberger, N. Mazer, and W. Känzig, Micelle to vesicle transition in aqueous solutions of bile salt and lecithin, J. Phys. Chem. 89: 1042–1049 (1985).

    Article  CAS  Google Scholar 

  42. S. Almog, T. Kushnir, S. Nir, and D. Lichtenberg, Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles, Biochemistry. 25: 2597–2605 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walde, P., Bachmann, P.A., Schmidli, P.K., Luisi, P.L. (1994). Chemical Autopoiesis: Self-Replication of Micelles and Vesicles. In: Yen, T.F., Gilbert, R.D., Fendler, J.H. (eds) Advances in the Applications of Membrane-Mimetic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2580-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2580-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6103-9

  • Online ISBN: 978-1-4615-2580-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics