Advertisement

Actin pp 85-96 | Cite as

Structural Requirements of Tropomyosin for Binding to Filamentous Actin

  • Sarah E. Hitchcock-DeGregori
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 358)

Abstract

Tropomyosin is an actin binding protein found in virtually all eucaryotic cells. Since its early discovery (Bailey, 1948), the actin binding properties and regulatory functions of tropomyosin have been extensively investigated. In addition, tropomyosin has served as a prototype for the structure of α-helical coiled-coil proteins (Cohen and Parry, 1990). The recent recognition of the diversity of tropomyosins in different cell types and discovery of the relationship between cell shape and isoform expression are indicative of a fundamental role for tropomyosin in the actin cytoskeleton. There is a need for a better understanding of structure-function relationships in this protein.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, K., 1948, Tropomyosin: A new asymmetric protein component of the muscle fibril, Biochem. J. 43: 271–279.PubMedGoogle Scholar
  2. Bazari W. L., Matsudaira P., Wallek M., Smeal T., Jakes R., and Ahmed, Y., 1988, Villin sequence and peptide map identify six homologous domains. Proc. Natl. Acad. Sci USA. 85: 4986–4990.PubMedCrossRefGoogle Scholar
  3. Broschat, K.O., and Burgess, D. R., 1986, Low Mr tropomyosin isoforms from chicken brain and intestinal epithelium have distinct actin binding properties, J. Biol Chem. 28: 13350–13359.Google Scholar
  4. Butters C. A., Willadsen K. W., and Tobacman, L. S., 1993, Cooperative interactions between adjacent troponin-tropomyosin complexes may be transmitted through the actin filament, J. Biol. Chem. 268: 15565–15570.PubMedGoogle Scholar
  5. Cohen C., Caspar, D. L. D., Parry, D. A. D., and Lucas, R., 1971, Tropomyosin crystal dynamics. Cold Spring Harbor Symp. Quant. Biol. 36: 205–216.CrossRefGoogle Scholar
  6. Cohen C., and Parry, D. A. D., 1990, α-Helical coiled coils and bundles: how to design an α-helical protein, Proteins: Str., Funct. Gen. 7: 1–15.CrossRefGoogle Scholar
  7. Cho, Y.-J., and Hitchcock-DeGregori, S.E., 1991, Relationship between alternatively spliced exons and functional domains in tropomyosin, Proc. Natl Acad. Sci. U.S.A. 88: 10153–10157.PubMedCrossRefGoogle Scholar
  8. Cho, Y.-J., Liu, J., and Hitchcock-DeGregori, S. E., 1990, The amino terminus of muscle tropomyosin is a major determinant for function. J. Biol. Chem. 265: 538–545.PubMedGoogle Scholar
  9. Dabrowska R., Nowak E., and Drabikowski, W., 1983, Some functional properties of nonpolymerizable and polymerizable tropomyosin, J. Muscle Res. and Cell Motil. 4: 143–161.CrossRefGoogle Scholar
  10. Fowler, V. M., 1987, Identification and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes, J. Biol. Chem. 262: 12792–12800.PubMedGoogle Scholar
  11. Gooding, C., Reinach, F. C., and MacLeod, A. R., 1987, Complete nucleotide sequence of the fast-twitch isoform of chicken skeletal muscle α-tropomyosin, Nuc. Acids Res. 15: 810CrossRefGoogle Scholar
  12. Graceffa, P., 1992, Heat-treated smooth muscle tropomyosin, Biochim. Biophys. Acta. 1120: 205–207.PubMedCrossRefGoogle Scholar
  13. Heald, R. W., and Hitchcock-DeGregori S. E., The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin, J. Biol. Chem. 263: 5254–5259.Google Scholar
  14. Heeley D. H., Golosinska K., and Smillie, L. B., 1987, The effects of troponin T fragments T1 and T2 on the binding of nonpolymerizable tropomyosin to F-actin in the presence and absence of troponin I and troponin T, J. Biol. Chem. 262: 9971–9978.PubMedGoogle Scholar
  15. Heeley, D.H., Smillie L. B., and Lohmeier-Vogel, E.M., 1989, Effects of deletion of tropomyosin overlap on regulated actomyosin subfragment 1 ATPase, Biochem. J. 258: 831–836.PubMedGoogle Scholar
  16. Hill L. E., Mehegan J. P., Butters C. A., and Tobacman, L. S., 1992, Analysis of troponin-tropomyosin binding to actin. J. Biol. Chem. 267: 16106–16113.PubMedGoogle Scholar
  17. Hitchcock-DeGregori, S.E., and Varnell, T. A., 1990, Tropomyosin has discrete actin-binding sites with sevenfold and fourteenfold periodicities, J. Mol Biol. 214: 885–89PubMedCrossRefGoogle Scholar
  18. Hodges R. S., Sodek J., Smillie L. B., and Jurasek, L., 1972, Tropomyosin: Amino acid sequence and coiled-coil structure, Cold Spring Harbor Symp. Quant. Biol. 37: 299–310.CrossRefGoogle Scholar
  19. Johnson P., and Smillie, L. B., 1977, Polymerizability of rabbit skeletal tropomyosin: effects of enzymatic and chemical modifications, Biochemistry. 16: 2264–2269.PubMedCrossRefGoogle Scholar
  20. Labeit S., Barlow D. P., Gautel, M., Gibson, T., Holt J., Hsieh, C.-L., Francke, U., Leonard K., Wardale J., Whiting A., and Trinick, J., 1990, A regular pattern of two types of 100-residue motif in the sequence of titin, Nature 345: 273–276.PubMedCrossRefGoogle Scholar
  21. Landschulz W. H., Johnson P. F., and McKnight, S. L., 1988, The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins, Science 240: 1759–1764.PubMedCrossRefGoogle Scholar
  22. Lees-Miller J. P., and Helfman, D.M., 1991, The molecular basis for tropomyosin isoform diversity, Bioessays 13: 429–437.PubMedCrossRefGoogle Scholar
  23. Lewis, W. G., Cote G. P., Mak A. S., and Smillie, L. B., 1983, Amino acid sequence of equine platelet tropomyosin, FEBS Letts 156: 269–273.CrossRefGoogle Scholar
  24. Mak A. S., and Smillie L. B., Non-polymerizable tropomyosin: preparation, some properties and F-actin binding, Biochem. Biophys. Res. Commun. 101: 208–214.Google Scholar
  25. Matsumura F., and Yamashiro-Matsumura, S., 1985, Purification and characterization of multiple isoforms of tropomyosin from rat cultured cells, J. Biol. Chem. 260: 13851–13859.PubMedGoogle Scholar
  26. Matsumura F., and Yamashiro, S., 1993, Caldesmon. Curr. Opin. Cell Biol. 5: 70–76.CrossRefGoogle Scholar
  27. Matsuzaki F., Matsumoto S., Yahara I., Yonezawa N., Nishida E., and Sakai, H., 1988, Cloning and characterization of porcine brain cofilin cDNA, J. Biol. Chem. 263: 11564–11568.PubMedGoogle Scholar
  28. McLachlan A. D., and Stewart, M., 1975, Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure, J. Mol Biol. 98: 293–304.PubMedCrossRefGoogle Scholar
  29. McLachlan A. D., Stewart M., and Smillie, L. B., 1975, Sequence repeats in α-tropomyosin. J. Mol. Biol. 98: 281–291.PubMedCrossRefGoogle Scholar
  30. McLachlan A. D., and Stewart, M., 1976, The 14-fold periodicity in α-tropomyosin and the interaction with actin, J. Mol Biol. 103: 271–298.PubMedCrossRefGoogle Scholar
  31. Milligan R. A., Whittaker M., and Safer, D., 1990, Molecular structure of F-actin and location of surface binding sites, Nature. 348: 217–221.PubMedCrossRefGoogle Scholar
  32. O’Brien, E. J., Bennett P. M., and Hanson, J., 1971, Optical diffraction studies of myofibrillar structure, Phil Trans. Roy. Soc. London B. 261: 201–208.PubMedCrossRefGoogle Scholar
  33. Ohtsuki, I., 1979, Molecular arrangement of troponin T in the thin filament, J. Biochem. (Tokyo). 86: 491–497.PubMedGoogle Scholar
  34. Phillips, Jr., G. N., Fillers, J. P., and Cohen, C., Tropomyosin crystal structure and muscle regulation, J. Mol. Biol. 192: 111–131.Google Scholar
  35. Pittinger M. F., and Helfman, D. M. 1992, In vitro and in vivo characterization of four fibroblast tropomyosins produced in bacteria: TM-2, TM-3, TM-5a, and TM-5b are co-localized in interphase fibroblasts, J. Cell Biol. 118: 841–858.CrossRefGoogle Scholar
  36. Ruiz-Opazo N., and Nadal-Ginard, B., α-Tropomyosin gene organization, J. Biol Chem. 262: 4755–4765.Google Scholar
  37. Stone D., and Smillie, L. B., 1978, Amino acid sequence of rabbit skeletal α-tropomyosin. The NH2-terminal half and complete sequence, J. Biol Chem. 253: 1137–1148.PubMedGoogle Scholar
  38. Stone D. B., and Mendelson, R. A., A tropomyosin fusion protein and its factor Xa cleavage product regulate acto-S1 MgATPase in the presence of troponin, Biophys. J. 55: 277a.Google Scholar
  39. Ueno H., Tawada Y., and Ooi T., Properties of non-polymerizable tropomyosin obtained by carboxypeptidase A digestion, J. Biochem. 80: 283–290.Google Scholar
  40. Walsh T. P., Trueblood C. E., Evans R., and Weber, A., 1985, Removal of tropomyosin overlap and the co-operative response to increasing calcium concentrations of the acto-subfrabment-1 ATPase, J. Mol Biol. 182: 265–269.PubMedCrossRefGoogle Scholar
  41. Wegner, A., 1981, Equilibrium of the actin-tropomyosin interaction, J. Mol Biol. 131: 839–853.CrossRefGoogle Scholar
  42. White S. P., Cohen, C., and Phillips, Jr., G.N., 1987, Structure of co-crystals of tropomyosin and troponin. Nature 325: 826–828.PubMedCrossRefGoogle Scholar
  43. Willadsen K. A., Butters C. A., Hill L. E., and Tobacman, L. S., 1992, Effects of the amino-terminal regions of tropomyosin and troponin T on thin filament assembly, J. Biol Chem. 267: 23747–23752.Google Scholar
  44. Yang Y., Korn E. D., and Eisenberg, E., 1979, Cooperative binding of tropomyosin to muscle and Acanthamoeba actin, J. Biol Chem. 254: 7137–7140.PubMedGoogle Scholar
  45. Yonezawa N., Nishida E., Iida K., Kumagai H., Yahara I., and Sakai, H., 1991, Inhibition of actin polymerization by a synthetic dodecapeptide patterned on the sequence around the actin-binding site of cofilin, J. Biol Chem. 266: 10485–10489.PubMedGoogle Scholar
  46. Zot A. S., and Potter, J. D., 1987, Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction, Annu. Rev. Biophys. Chem. 16: 535–559.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Sarah E. Hitchcock-DeGregori
    • 1
  1. 1.Department of Neuroscience and Cell BiologyRobert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations