Skip to main content

Actin Filament Dynamics in Cell Motility

  • Chapter
Actin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 358))

Abstract

The motility of individual animal cells is important for a wide variety of basic biological processes including rearrangements during embryonic development, neurite outgrowth, wound healing, inflammation, and cancer metastasis. The actin cytoskeleton in animal cells must also drastically rearrange in a cell-cycle dependent manner in order to perform cytokinesis. Actin microfilament dynamics are intimately involved in all of these common types of cell motility, but the mechanisms of force transduction and movement are still poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie M., Heaysman, J. E. M., and Pegrum, S. M., 1970a, The locomotion of fibroblasts in culture. II. “Ruffling.” Exp. Cell Res. 59: 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Abercrombie M., Heaysman, J. E. M., and Pegrum, S. M., 1970b, The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella. Exp. Cell Res. 62: 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Blikstad I., Markey F., Carlsson L., Persson T., and Lindberg, U., 1978, Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I, Cell 15: 935–943.

    Article  PubMed  CAS  Google Scholar 

  • Buβ, F., Temm-Grove, C., Henning S., and Jockusch, B. M., 1992, Distribution of profilin in fibroblasts correlates with the presence of highly dynamic actin filaments, Cell Motil. Cytoskel. 22: 51–61.

    Article  Google Scholar 

  • Cao, L.-g., Babcock, G. G., Rubenstein P. A., and Wang, Y.-l., 1992, Effects of profilin and profilactin on actin structure and function in living cells, J, Cell Biol. 117: 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  • Cox D., Condeelis J., Wessels D., Soil D., Kern H., and Knecht, D. A., 1992, Targeted disruption of the ABP-120 gene leads to cells with altered motility, J. Cell Biol. 116: 943–955.

    Article  PubMed  CAS  Google Scholar 

  • Dabiri G. A., Sanger J. M., Portnoy, D. A. and Southwick, F. S., 1990, Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly, Proc. Natl. Acad. Sci. USA 87: 6068–6072.

    Article  PubMed  CAS  Google Scholar 

  • DeLozanne A., and Spudich, J. A., 1987, Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination, Science 236: 1086–1091.

    Article  CAS  Google Scholar 

  • Drenckhahn D., and Pollard, T. D., 1986, Elongation of actin filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macromolecules, J. Biol. Chem. 261: 12754–12758.

    PubMed  CAS  Google Scholar 

  • Fisher G. W., Conrad P. A., DeBiasio R. L., and Taylor, D. L., 1988, Centripetal transport of cytoplasm, actin and the cell surface in lamellipodia of fibroblasts, Cell Motil. Cytoskel. 11: 235–247.

    Article  CAS  Google Scholar 

  • Forscher P., and Smith, S. J., 1988, Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone, J. Cell Biol. 107: 1505–1516.

    Article  PubMed  CAS  Google Scholar 

  • Gellin B. G., and Broome, C. V., 1989, Listeriosis, JAMA 261: 1313–1320.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont P. J., Machesky L. M., Doberstein S. K., and Pollard, T. D., 1991, Mechanism of the interaction of platelet profilin with actin, J. Cell Biol. 113: 1081–1089.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont P. J., Furman M. I., Wachsstock D., Safer D., Nachmias V. T., and Pollard, T. D., 1992a, The control of actin nucleotide exchange by thymosin β4 and profilin. A potential regulatory mechanism for actin polymerization in cells, Mol. Biol. Cell 3: 1015–1024.

    PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont P. J., Theriot J. A., Tomaselli G. F., and Finkel, T., 1992b, Profilin overexpression stabilizes actin filament bundles, Circulation 86: I–178.

    Google Scholar 

  • Knecht D. A., and Loomis, W. F., 1987, Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum, Science 236: 1081–10

    CAS  Google Scholar 

  • Lewis A. K., and Bridgman, P. C., 1992, Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, J. Cell Biol. 119: 1219–1243.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison, T. J., 1988, Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence, J. Cell Biol. 109: 637–652.

    Article  Google Scholar 

  • Okabe S., and Hirokawa, N., 1991, Actin dynamics in growth cones, J. Neurosci. 11: 1918–1929.

    PubMed  CAS  Google Scholar 

  • Okabe, S. and Hirokawa, N., 1992, Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons, J. Cell Biol. 117: 105–120.

    Article  PubMed  CAS  Google Scholar 

  • Oster G. F., and Perelson, A. S., 1987, The physics of cell motility, J. Cell Sci. Suppl. 8: 35–54.

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., 1990, Rate constants for the reactions of ATP-and ADP-actin with the ends of actin filaments, J. Cell Biol. 103: 2747–2754.

    Article  Google Scholar 

  • Reinsch S. S., Mitchison T. J., and Kirschner, M., 1991, Microtubule polymer assembly and transport during axonal elongation, J. Cell Biol. 115: 365–379.

    Article  PubMed  CAS  Google Scholar 

  • Safer D., Golla R., and Nachmias, V. T., 1990, Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets, Proc. Natl. Acad. Sci. USA 87: 2536–2540.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, M. C., and Wang, Y.-l., 1990, Exogenous nucleation sites fail to induce detectable polymerization of actin in living cells, J. Cell Biol. 110: 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Sanger J. M., Sanger J. W., and Southwick, F. S., 1992, Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes, Infect. Immun. 60: 3609–3619.

    PubMed  CAS  Google Scholar 

  • Shariff A., and Luna, E. J., 1992, Diacylglycerol-stimulated formation of actin nucleation sites at plasma membranes, Science 256: 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Small, J. V., 1981, Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks, J. Cell Biol. 91: 695–705.

    Article  PubMed  CAS  Google Scholar 

  • Theriot J. A., and Mitchison, T. J., 1991, Actin microfilament dynamics in locomoting cells, Nature 352: 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Theriot J. A., and Mitchison, T. J., 1992a, The nucleation-release model of actin filament dynamics in cell motility, Trends Cell Biol. 2: 219–222.

    Article  PubMed  CAS  Google Scholar 

  • Theriot J. A., and Mitchison, T. J., 1992b, Comparison of actin and cell surface dynamics in motile fibroblasts, J. Cell Biol. 118: 367–377.

    Article  Google Scholar 

  • Theriot J. A., Mitchison T. J., Tilney L. G., and Portnoy, D. A., 1992, The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization, Nature 357: 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Tilney L. G., and Portnoy, D. A., 1989, Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes, J. Cell Biol. 109: 1597–1608.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y.-l., 1985, Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling, J. Cell Biol. 101: 597–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Theriot, J.A. (1994). Actin Filament Dynamics in Cell Motility. In: Estes, J.E., Higgins, P.J. (eds) Actin. Advances in Experimental Medicine and Biology, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2578-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2578-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6102-2

  • Online ISBN: 978-1-4615-2578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics