Skip to main content

Low Molecular Weight Neurotransmitters

  • Chapter
Bioelectrochemistry IV

Part of the book series: NATO ASI Series ((NSSA,volume 267))

Abstract

Our lives are critically dependent on our ability to sense the environment and world around us and to use this sensory information to guide our actions or physical movements. Our sensory system is designed to detect physical phenomena such as light, sound, heat or pressure and chemical stimuli by means of taste or smell. The devices employed to detect such stimuli are called primary sensory receptors. These sensory receptors convert the environmental stimulus into an electrical signal or nerve impulse which travels along a sensory neuron to a primary processing center where information from the particular form of sensing is initially evaluated. The frequency of the impulses transmitted along a particular sensory neuron reflects the intensity of the stimulation. For example, if a sensory receptor in the skin of the hand senses a very hot surface a burst of high frequency electrical impulses pass along the sensory nerve fiber, to which the receptor is attached, to the spinal cord which rapidly then initiates a burst of nerve impulses along appropriate motoneurons to muscle systems that act to remove the hand from the heat source. This is a very rapid reflex action designed to protect the hand from damage. However, the brain and spinal cord, i.e., the central nervous system, continuously receives sensory information which is ultimately processed in cortical regions of the brain. A combination of voluntary decisions based upon past experience, which is stored in the central nervous system, and information provided from all sensory inputs is employed to decide upon an appropriate motor action. This information is transferred to the peripheral musculature via motoneurons which often project from the spinal cord and, to a somewhat lesser extent, directly from encephalic structures in the brain-system. The motoneurons carry nerve impulses to the muscles and cause the muscle to contract. Thus, neurons carry sensory information to the central nervous system. After appropriate evaluation and processing, neurons then carry instructions from the central nervous system to muscles to effect appropriate movements. Clearly, therefore, neurons or nerve cells are the biological entities responsible for the transfer and processing of all sensory and motor information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Stryer, Biochemistry, 2nd Edition, Freeman, New York (1981), pp. 205–231.

    Google Scholar 

  2. J. B. Finean, R. Coleman and R. H. Mitchell, Membranes and Their Cellular Functions, 3rd Edition, Blackwell, Oxford (1984).

    Google Scholar 

  3. M. S. Bretscher, Science, 181, 622 (1973).

    Article  CAS  Google Scholar 

  4. B. Kolb and I. Q. Whishaw, Fundamentals of Human Neuropsychology, W.H. Freeman and Company, San Francisco (1980), chapter 2, pp. 31–53.

    Google Scholar 

  5. A. L. Hodgkin, The Conduction of the Nervous Impulse, Liverpool University Press, Liverpool U.K. (1964).

    Google Scholar 

  6. B. Katz, Nerve, Muscle and Synapse, McGraw-Hill, New York (1966).

    Google Scholar 

  7. R.D. Keynes, Proc. Royal Soc. London Ser. B, 220, 1 (1983).

    Article  CAS  Google Scholar 

  8. E. V. Evarts, Scientific American, 241, 164 (1979).

    Article  CAS  Google Scholar 

  9. I. Tasaki, Am. J. Physiol., 127, 211 (1939).

    Google Scholar 

  10. A.F. Huxley and R. Stampfli, J. Physiol. (London), 108, 315 (1949).

    Google Scholar 

  11. P. Mclcgeer, J. C. Eccles and E. G. Mcgeer, Molecular Neurobiology of the Mammalian Brain, 2nd Edition Plenum Press, New York (1987), pp. 58–60.

    Google Scholar 

  12. H.F. Bradford, Chemical Neurobiology, W. H. Freeman and Company, New York (1966), pp. 20–22.

    Google Scholar 

  13. R.B. Kelly, J. W. Deutsch, S. S. Carlson and J. Wagner, Annu. Rev. Neurosci., 2, 399 (1979).

    Article  CAS  Google Scholar 

  14. P. F. Baker, A. L. Hodgkin, E. B. Ridgway, J. Physiol. (London), 218, 709 (1971).

    CAS  Google Scholar 

  15. R. J. Delorenzo, Cell Calcium, 2, 365 (1981).

    Article  CAS  Google Scholar 

  16. R. J. Delorenzo, in: Neurotransmitter Interaction and Compartmentation, H. F. Bradford (Editor), Plenum Press, New York (1982), pp. 101–120.

    Google Scholar 

  17. W. Y. Cheung, Science, 207, 19 (1980).

    Article  CAS  Google Scholar 

  18. A.R. Means, J. S. Tash and J. G. Chafouleas, Physiol. Rev., 62, 1 (1982).

    CAS  Google Scholar 

  19. J. C. Eccles, The Physiology of Synapses, Springer — Verlag, Heidelberg (1964).

    Book  Google Scholar 

  20. B. G. Cragg, Brain, 98, 81 (1975).

    Article  CAS  Google Scholar 

  21. H. Bostock and T. A. Sears, J. Physiol. (London), 280, 273 (1978).

    CAS  Google Scholar 

  22. P. L. Mcgeer, J. C. Eccles, E. G. Mcgeer, Molecular Neurobiology of the Mammalian Brain, 2nd Edition, Plenum Press, New York (1987), pp. 151–154.

    Google Scholar 

  23. J. C. Eccles and P. L. Mcgeer, Trends in Neurological Science, 2, 39 (1979).

    Article  Google Scholar 

  24. M. Schramm and Z. Selinger, Science, 225, 1350 (1984).

    Article  CAS  Google Scholar 

  25. M. J. Berridge, Scientific American, 253, 142 (1985).

    Article  CAS  Google Scholar 

  26. T. W. Stone, Neuroscience, 6, 523 (1981).

    Article  CAS  Google Scholar 

  27. R. S. Jope, Brain Res., 180, 313 (1979).

    CAS  Google Scholar 

  28. D. S. De Belleroche and I. M. Gardiner, Br. J. Pharmacol., 75, 359 (1982).

    Google Scholar 

  29. S. Brimijoin, Progr. Neurobiol., 21, 291 (1983).

    Article  CAS  Google Scholar 

  30. R. H. Roth, in: The Neurobiology of Dopamine, A. S. Horn, J. Korf and B. H. C. Westerink, (Editors); Academic Press, London (1979), pp. 101–190.

    Google Scholar 

  31. R. J. Baldessarini, in: Handbook of Psychopharmacology, L. L. Iversen, S. D. Iversen and S. H. Snyder (Editors) Plenum Press, New York (1975), Vol. 3, pp. 37–137.

    Google Scholar 

  32. L. L. Iversen, in: Handbook of Psychopharmacology, L. L. Iversen, S. D. Iversen and S. H. Snyder (Editors) Plenum Press, New York (1978), Vol. 3, pp. 381–442.

    Google Scholar 

  33. I. Creese, Trends in Neuroscience, 5, 40 (1982).

    Article  CAS  Google Scholar 

  34. P. Seeman, Pharmacol. Rev., 32, 229 (1980).

    CAS  Google Scholar 

  35. R. Susilo, H. Rommelspacher and G. Höefle, J. Neurochem., 52, 1793 (1989).

    Article  CAS  Google Scholar 

  36. J. C. Schawartz, H. Pollard, and T. T. Quach, J. Neurochem., 35, 26 (1980).

    Article  Google Scholar 

  37. R. P. Shank and G. Le M. Campbell, in: Handbook of Neurochemistry, 2nd Edition, A. Lajtha (Editor), Plenum Press, New York (1983), Vol. 3, pp. 381–404.

    Google Scholar 

  38. G. E. Fagg, Trends in Neuroscience, 8, 207 (1985).

    Article  CAS  Google Scholar 

  39. A. C. Foster and G. E. Fagg, Brain Res. Rev., 7, 103 (1984).

    Article  CAS  Google Scholar 

  40. J. W. Ollney, in: Kainic Acid as a Tool in Neurobiology, E. G. Mcgeer, J. W. Olney and P. L. Mcgeer (Editors), Raven Press, New York (1978), pp. 95–122.

    Google Scholar 

  41. F. E. Bloom and A. Lazerson, Brain, Mind and Behavior, 2nd Edition, W. H. Freeman and Co., New York (1988), Chap.4.

    Google Scholar 

General texts and reviews

  • P. L. Mcgeer, J. C. Eccles and E. G. Mcgeer, Molecular Neurobiology of the Mammalian Brain, 2nd Edition, Plenum Press, New York (1987).

    Google Scholar 

  • Z. L. Kruk and C. J. Pycock, Neurotransmitters and Drugs, Croom Helm, London (1979).

    Google Scholar 

  • A. S. Horn, J. Korf and B. H. C. Westerink, The Neurobiology of Dopamine, Academic Press, New York (1979).

    Google Scholar 

  • L. Hertz, E. Kvamme, E. G. Mcgeer and A. Schousboe, Glutamine, Glutamate, and Gaba in the Central Nervous System, Alan R. Liss, New York (1985).

    Google Scholar 

  • G. Dichiara and G. L. Gessa (Editors), Glutamate as a Neurotransmitter, Advances in Biochemical Psychopharmacology, Raven Press, New York (1981), Vol. 27.

    Google Scholar 

  • F. Fonnum (Editor), Amino Acids as Chemical Transmitters, Nato Asi Series, Plenum Pess, New York (1978), vol. 48.

    Google Scholar 

  • H. F. Bradford, Chemical Neurobiology, W. H. Freeman And Co., New York (1986).

    Google Scholar 

  • S. D. Erulkar, Chemically Mediated Synaptic Transmission: An Overview, in: Basic Neurochemistry Molecular, Cellular and Medical Aspects, G. J. B. Siegel, B. W. Agranoff, R. W. Albers and P. B. Molinoff, (Editors), 4th Edition, Raven Press, New York (1989), pp. 151–182.

    Google Scholar 

  • F. E. Bloom, Neurotransmitters: Past, Present and Future Directions, in Faseb J., 2, 32 (1988).

    CAS  Google Scholar 

  • E. V. Evarts, Brain Mechanisms of Movement, in Scientific American, September 1979, pp. 164–173.

    Google Scholar 

  • B. Kolb and I. Q. Whishaw, Fundamentals of Human Neuropsychology, W. H. Freeman and Co., San Francisco (1980).

    Google Scholar 

  • F. E. Bloom and A. Lazerson, Brain Mind and Behavior, 2nd Edition, W. H. Freeman and Co., New York, 1988.

    Google Scholar 

  • F. H. Netter, Nervous System, Parts I and Ii, Ciba Collections of Medical Illustrations (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Wrona, M.Z., Dryhurst, G. (1994). Low Molecular Weight Neurotransmitters. In: Melandri, B.A., Milazzo, G., Blank, M. (eds) Bioelectrochemistry IV. NATO ASI Series, vol 267. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2576-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2576-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44813-3

  • Online ISBN: 978-1-4615-2576-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics