Measurement of Ultrasonic Attenuation and Grain Size of Thin Metal Sheets Using Resonance Mode EMAT

  • Takao Hyoguchi
  • Toshio Akagi
  • Oliver B. Wright
  • Katsuhiro Kawashima


The development of nondestructive, reliable methods for the measurement of grain sizes in thin metal sheets is very important in the metal industry. Grain size, conventionally measured destructively on small specimens using optical microscopy, is closely correlated with mechanical properties such as yield strength and plastic deformation.1,2 It is well known that the grain size is also related to the ultrasonic attenuation due to grain boundary scattering,3–9 and this attenuation has been measured nondestructively using conventional pulse-echo methods in bulk samples.10–14 However, pulse-echo attenuation measurements in thin metal sheets down to sub-mm thickness are limited in accuracy by the high time resolution required. The ultrasonic backscattering method has also been proposed for the measurement of attenuation and grain size for thin metal sheets.15 The disadvantage of both these methods is that they require coupling fluid between the transducer and sample.


Shear Wave Longitudinal Wave Steel Sheet Sound Velocity Static Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Klinman, G. R. Webster, F. J. Marsh and E. T. Stephenson, Mat. Eval., Vol. 38, 26 (1980).Google Scholar
  2. 2.
    J. F. Bussiere, Mat. Eval., Vol. 44, 560 (1986).Google Scholar
  3. 3.
    W. P. Mason and H. J. McSkimin, J Appl. Phys.,Vol. 19, 940 (1948).CrossRefGoogle Scholar
  4. 4.
    L. G. Merkulof, Sov. Phys. Tech. Phys., Vol. 1, 59 (1956).Google Scholar
  5. 5.
    E. P. Papadakis, J. Acoust. Soc. Am., Vol. 37, 711 (1965).CrossRefGoogle Scholar
  6. 6.
    S. Serabian, Brit. J. Nondestr. Test., Vol. 22, 69 (1980).Google Scholar
  7. 7.
    R. L. Smith, Ultrasonics, 211 (Sept. 1982).Google Scholar
  8. 8.
    B. Kopec, Ultrasonics, 267 (Nov. 1975).Google Scholar
  9. 9.
    N. Mercier, Proc. Ultrasonics International 1975 Conference, 64 (1975).Google Scholar
  10. 10.
    W. N. Reynolds and R. L. Smith, Brit. J. Nondestr. Test., 291 (Sept. 1985).Google Scholar
  11. 11.
    E. R. Generazio, Mat. Eval., Vol. 44, 198 (1986).Google Scholar
  12. 12.
    R. L. Smith, NDT International, Vol. 20, 43 (1987).CrossRefGoogle Scholar
  13. 13.
    D. Nicoletti, B. Onaral and N. Bilgutay, Mat. Eval., Vol. 50, 788 (1992).Google Scholar
  14. 14.
    H. Fukuhara, C. Masuda and S. Nishijima, Proc. Int. Symp. Nondestr. Test. and Stress-Strain Meas., Tokyo, October, 12–14, 1992, ed. by T. Kishi and S. Takahashi, Jpn. Soc. Non-Destr. Insp., p. 291 (1992).Google Scholar
  15. 15.
    R. D. Diamond, Metall, Vol. 41, 1232 (1987).Google Scholar
  16. 16.
    K. Kawashima, J. Acoust. Soc. Am., Vol. 87, 681 (1990).CrossRefGoogle Scholar
  17. 17.
    K. Kawashima and O. B. Wright, J. Appl. Phys., Vol. 72, 4830 (1992).CrossRefGoogle Scholar
  18. 18.
    K. Kawashima, T Hyoguchi and T. Akagi, J. Nondestr. Eval., Vol. 12 (1993).Google Scholar
  19. 19.
    J. P. Monchalin and J. F. Bussiere, J. Phys. Paris, Vol. C10, 775 (1985).Google Scholar
  20. 20.
    R. A. Alpher and R. J. Rubin, J. Acoust. Soc. Am., Vol. 26, 452 (1954).CrossRefGoogle Scholar
  21. 21.
    R. Truell and W. Oates, J. Acoust. Soc. Am., Vol. 35, 1382 (1963).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Takao Hyoguchi
    • 1
  • Toshio Akagi
    • 1
  • Oliver B. Wright
    • 1
  • Katsuhiro Kawashima
    • 2
  1. 1.Electronics Research LaboratoriesNippon Steel CorporationKanagawaJapan
  2. 2.Tokyo Engineering UniversityTokyoJapan

Personalised recommendations