Advertisement

Growth Rates and Interface Shapes in Semiconductor Materials Using Real Time Radiographic Imaging

  • R. T. Simchick
  • S. Sorokach
  • A. L. Fripp
  • W. J. Debnam
  • R. F. Berry
  • D. J. Jobson
  • P. G. Barber

Abstract

The success of new electronic materials has been due in part to the development of procedures that produce semiconductors of high purity and perfection. These materials have been grown from the gas phase, solution, and melts. The Bridgman technique is a way semiconductor crystals are grown from the melt. With this technique the semiconductor material is usually sealed in a fused silica ampoule, placed inside the tubular furnace, and heated to completely melt the sample. The sample solidifies by cooling the molten material in one of three ways: translating the furnace along the sample, slowly extracting the sample ampoule from the furnace, or uniformly lowering the temperature. The solidification rate is typically only a few millimeters per hour. A diagram of a typical Bridgman furnace is shown in figure 1 and more details of the furnace used in this experiment are found in the literature1. The furnaces used in such procedures are generally opaque to visible radiation.

Keywords

Crystal Length Interface Position Interface Shape Actual Growth Rate Bridgman Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Hubert, A. L. Fripp, and C.S. Welch, “Resolution of the discrepancy between temperature indicated interface and radiographically determined interface in a vertical Bridgman furnace,” J.Cryst. Growth 131:75 (1993).CrossRefGoogle Scholar
  2. 2.
    Y. Huang, W. J. Debnam and A. L. Fripp, “Interface shapes during vertical Bridgman growth of PbSnTe crystals.” J. Cryst. Growth 104:315 (1990).CrossRefGoogle Scholar
  3. 3.
    P. Capper, J. J. G. Gosney, and M. T. Quelch, “Quenching studies in Bridgman-grown Cdx, Hg1-xTe,” J.Cryst. Growth 63:154 (1983).CrossRefGoogle Scholar
  4. 4.
    A. F. Witt, H. C. Gatos, M. Lichtensteiger, M. C. Lavine, and C. J. Herman, “Crystal growth and steady-state segregation under zero gravity-InSb”, J. Electrochem. Soc. 122:276 (1975).CrossRefGoogle Scholar
  5. 5.
    K. M. Kim, A. F. Witt, M. Lichtensteiger, and H. C. Gatos, “Quantitative analysis of the effects of destabilizing vertical thermal gradients on crystal growth and desegregation”. J. Electrochem. Soc. 125:475 (1978).CrossRefGoogle Scholar
  6. 6.
    J.N. Carter, A. Lam, and D.M. Schleich, “Ultrasonic time of flight monitoring of the position of the liquid solid interface during the Bridgman growth of germanium,” Review of Scientific Instruments, 63:3472 (1992).CrossRefGoogle Scholar
  7. 7.
    R. T. Simchick, S. E. Sorokach, A. L. Fripp, W. J. Debnam, R. F. Berry, and P. G. Barber; “Gamma Ray and x-Ray imaging studies of the location and shape of the melt solid interface during Bridgman growth of germanium and lead tin telluride”; vol. 35 Advances in X-Ray Analysis, Plenum Publishing Corp, 1992.Google Scholar
  8. 8.
    Barber, P.G. Crouch, R.K., Fripp, A.L., Debnam, W.J., Berry, R.F. and Simchick, R.T.;“A Procedure to visualize the melt-solid interface in Bridgman grown germanium and lead tin telluride”; J.Crystal Growth, 74:228 (1986).CrossRefGoogle Scholar
  9. 9.
    K. Kakimoto, M. C. Eguchi, H. Watanabe, and T. Hibiya, In-situ observation of solid - liquid interface shape by x-ray radiography during silicon single-crystal growth J. Cryst. Growth 91:509 (1988).CrossRefGoogle Scholar
  10. 10.
    E. R. Dougherty and C. R. Giardina, Image Processing-Continuous to Discrete, Vol. 1 Prentiss-Hall, Inc. Newark (1987) 59.Google Scholar
  11. 11.
    P. G. Barber, R. F. Berry, W. J. Debnam, A. L. Fripp, Y. Huang, K. Stacy, and R. T. Simchick; “Modeling melt-solid interfaces in Bridgman growth”; J.Crystal Growth 97:672 (1989).CrossRefGoogle Scholar
  12. 12.
    D. J. Jobson, “A discrepancy within primate spatial vision and its bearing on the definition of edge detection processes in machine vision,” NASA Technical Memorandum no. 102739, September,1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. T. Simchick
    • 1
    • 2
  • S. Sorokach
    • 1
    • 2
  • A. L. Fripp
    • 1
  • W. J. Debnam
    • 1
  • R. F. Berry
    • 1
  • D. J. Jobson
    • 1
  • P. G. Barber
    • 1
    • 3
  1. 1.NASA Langley Research CenterHamptonUSA
  2. 2.Lockheed Engineering and Sciences CorporationHamptonUSA
  3. 3.Longwood CollegeFarmvilleUSA

Personalised recommendations