Skip to main content

Time-Resolved Holography for the Microscopic Study of Crack-Tip Motion in Dynamic Fracture

  • Chapter
Nondestructive Characterization of Materials VI

Abstract

Large scale fracture mechanics has proven very useful in the analysis of fracture in uniform materials. However, there exist several classes of fracture (such as stress-corrosion cracking1, intergranular fracture2, and fracture of polymeric materials3,4) which appear unvaried and behave homogeneously on the macroscopic scale, but which have drastically different fracture properties on the microscopic scale. Theoretical studies, though initially focused on large scale homogeneous materials, now cover the full range of scale from finite elemental analysis of large structural members5 to atomistic scale models6. However, experimental techniques are still involved in the larger scale analysis. Traditional experimental fracture techniques are therefore unequipped to properly evaluate the dynamic fracture behavior of these materials without averaging out the variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kelly, R.G., Frost, A.J., Shahrabi, T., and Newman, R.C., Brittle fracture of Au/Ag alloy induced by a surface film, Metall. Transactions 22A:531 (1991).

    Article  CAS  Google Scholar 

  2. Lin, T., Evans, A.G., and Ritchie, R.O., A statistical model of brittle fracture by transgranular cleavage, J. Mech. Phys. Sol. 34:477 (1986).

    Article  Google Scholar 

  3. Cantwell, W.J., Roulin-Moloney, A.C. and Kausch, H.H., Dynamic crack propagation in the double-torsion test geometry, J. Mat. Sci. Let. 7:976 (1988).

    Article  CAS  Google Scholar 

  4. Stalder, B., Béguelin, P., Roulin-Moloney, A.C., and Kausch, H.H., The graphite gauge and its application to the measurement of crack velocity, J. Mat. Sci. 24:2262 (1989).

    Article  CAS  Google Scholar 

  5. Atluri, S.N. and Nishioka, T., Numerical studies in dynamic fracture mechanics, Int. J. Fract. 27:245 (1985).

    Article  Google Scholar 

  6. Sieradzki, K., Dienes, G.J., Paskin, A. and Massoumzadeh, B., Atomistics of crack propagation, Acta Met. 36:651 (1988).

    Article  CAS  Google Scholar 

  7. Griffith, A.A., The phenomena of rupture and flow in solids, Phil. Trans. A 221:163 (1920).

    Article  Google Scholar 

  8. Mott, N.F., Fracture of metals: Theoretical considerations, Engineering 165:16 (1948).

    Google Scholar 

  9. Berry, J.P., Some kinetic consideration of the Griffith criterion for fracture, J. Mech. Phys. Sol. 8:194 (1960).

    Article  Google Scholar 

  10. Freund, L.B., “Dynamic Fracture Mechanics”, Cambridge University Press, New York (1990).

    Book  Google Scholar 

  11. Schardin, H., “Velocity effects in fracture”, in: “Fracture”, John Wiley and Sons, New York (1959).

    Google Scholar 

  12. Winkler, S., Shockey, DA. and Curran, D.R., Crack propagation at supersonic velocities, Int. J. Fract. Mech. 6:151 and 6:271 (1970).

    Google Scholar 

  13. Suzuki, S., Homma, H. and Kusaka, R., Pulsed holographic microscopy as a measurement method of dynamic fracture toughness for fast propagating cracks, J. Mech. Phys. Sol. 36:631 (1988).

    Article  Google Scholar 

  14. Suzuki, S. and Nakajima, T., Development of laser inducing technique for fast propagating cracks in PMMA, in: “ASME PVP - Vol. 160 Dynamic Fracture Mechanics for the 1990’s” H. Homma, DA. Shockey, G. Yagawa, eds., ASME (1989).

    Google Scholar 

  15. Kamath, S.M. and Kim K.S., On Rayleigh wave emissions in brittle fracture, Int. J. Fract. 31:R57 (1986).

    Article  CAS  Google Scholar 

  16. Thaulow, C. and Burget, W., The emission of Rayleigh waves from brittle fracture initiation, and the possible effect of the reflected waves on crack arrest, Fat. Fract. Eng. Mat. Struct. 13:327 (1990).

    Article  Google Scholar 

  17. Rossmanith, H.P. and Fourney, W.L., On crack tip acceleration and deceleration, Eng. Fract. Mech. 16:837 (1982).

    Article  Google Scholar 

  18. Shand, E.B., Experimental study of fracture of glass: II, Experimental data, J. Amer. Ceram. Soc. 37:559 (1954).

    Article  CAS  Google Scholar 

  19. Congleton, J. and Petch, N.J., Crack branching, Phil. Mag. 16:749 (1967).

    Article  CAS  Google Scholar 

  20. Kerkhof, F., Analyse des spröden zugbruches von gläsern mittels Ultraschall, Naturwissenschaften 40:478 (1953).

    Article  Google Scholar 

  21. Kerkhof, F., Ultrasonic fractography, in: “Proceedings of the Third International Congress on High- Speed Photography”, London (1956).

    Google Scholar 

  22. Michalske, TA. and Fréchette, V.D., Modified sonic technique for crack velocity measurement, Int. J. Fract. 17:251 (1981).

    Article  Google Scholar 

  23. Lowes, J.M. and Fearnehough, G.D., The detection of slow crack growth in crack opening displacement specimens using an electrical potential method, Eng. Fract. Mech. 3:103 (1971).

    Article  Google Scholar 

  24. Joyce, JA. and Schneider, C.S., Crack length measurement during rapid crack growth using an alternating current potential difference method, J. Test. Eval. 16:257 (1988).

    Article  CAS  Google Scholar 

  25. Barnes, C.R., A measurement technique for determining dynamic crack speeds in engineering-materials experimentation, Exp. Tech. 9:33 (1985).

    Article  Google Scholar 

  26. Kobayashi, A., Ohtani, N., and Munemura, M., Dynamic stress intensity factors during viscoelastic crack propagation at various strain rates, J. Appl. Poly. Sci. 25:2789 (1980).

    Article  CAS  Google Scholar 

  27. Crouch, BA. and Williams, J.G., Application of a dynamic numerical solution to high speed fracture experiments - II. Results and a thermal blunting model, Eng. Fract. Mech. 26:553 (1987).

    Article  Google Scholar 

  28. Fineberg, J., Gross, S.P., Marder, M., and Swinney, H.L., Instability in dynamic fracture, Phys. Rev. Let. 67:457 (1991).

    Article  CAS  Google Scholar 

  29. Racca, R.G. and Dewey, J.M., Time smear effects in spatial frequency multiplexed holography, Appl. Opt. 28:3652 (1989).

    Article  CAS  Google Scholar 

  30. Hall, R.G.N., Gates, J.W.C. and Ross, I.N., Recording rapid sequences of holograms, J. Phys. E: Sci. Inst. 3:789 (1970).

    Article  Google Scholar 

  31. Ostrovskaya, G.V. and Ostrovsky, Y.I., Holographic methods of plasma diagnostics in: “Progress in Optics XXII”, North-Holland Publishing Corp. (1985).

    Google Scholar 

  32. Tschudi, T., Yamanaka, C., Sasaki, T., Yoshida, K. and Tanake, K., A study of high-power laser effects in dielectrics using multiframe picosecond holography, J. Phys. D D11:177 (1978).

    Article  Google Scholar 

  33. Thomas, K.S., Harder, C.R., Quinn, W.E. and Siemon, R.E., Helical field experiments on a three-meter theta pitch, Phys. Fluids 15:1658 (1972).

    Article  Google Scholar 

  34. Yamamoto, Y., Multi-frame pulse holography system, in: “Proceedings of SPIE’s 18th International Congress on High Speed Photography and Photonics, Vol. 1032”, SPIE, Bellingham, WA (1988).

    Google Scholar 

  35. Landry, M.J., and McCarthy, A.E., Use of the multiplle cavity laser holographic system for EBW Analysis, Opt. Eng. 14:69 (1975).

    Article  Google Scholar 

  36. White, J.U., Long optical paths of large aperture, J. Opt. Soc. Amer. 32:285 (1942).

    Article  Google Scholar 

  37. Deaton, J.B., McKie, A.D.W., Spicer, J.B., and Wagner, J.W., Generation of narrow-band ultrasound with a long cavity mode-locked Nd:YAG laser, Appl. Phys. Let. 56:2390 (1990).

    Article  CAS  Google Scholar 

  38. Ehrlich MJ, Steckenrider JS, Wagner JW, High-speed time-resolved holography for imaging transient events, in: “1992 Review of Progress in Quantitative NDE”, La Jolla, California, (1992).

    Google Scholar 

  39. Steckenrider JS, Ehrlich MJ, Wagner JW, Pulsed Holographic Recording of Very High Speed Transient Events, in: “Proceedings of the 1991 SPIE International Symposium on Optical Applied Science and Engineering”, SPIE, Bellingham, WA (1991).

    Google Scholar 

  40. Steckenrider JS, Wagner JW, Controlled generation of sharp pre-cracks in thin glass plates, Int. J. Fract. 55:R55 (1992).

    Google Scholar 

  41. Roberts, D.K., and Wells, A.A., The velocity of brittle fracture, Engineering 178:820 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steckenrider, J.S., Wagner, J.W. (1994). Time-Resolved Holography for the Microscopic Study of Crack-Tip Motion in Dynamic Fracture. In: Green, R.E., Kozaczek, K.J., Ruud, C.O. (eds) Nondestructive Characterization of Materials VI. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2574-5_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2574-5_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6100-8

  • Online ISBN: 978-1-4615-2574-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics