Advertisement

Surface Acoustic Waves Generation by Phase Velocity Scanning of Laser Interference Fringes and Its Application to Nondestructive Materials Evaluation

  • H. Nishino
  • Y. Tsukahara
  • Y. Nagata
  • T. Koda
  • K. Yamanaka

Abstract

Laser generated ultrasounds1,2 which do not depend on the ablation effect but on the thermoelastic effect have been expected to provide noncontact and nondestructive quantitative materials evaluation method. This method together with optical detectors3 can be applied to measure acoustic properties of tested objects in various environments, high temperature, vacuum and so on, where the conventional piezoelectric transducer method cannot be applied.4 Because of the noncontacting, it also can be applied to directly measure acoustic properties of tested objects without perturbation of coupling materials.4

Keywords

Laser Beam Surface Acoustic Wave Interference Fringe Acoustic Property Lamb Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Hutchins, in Physical Acoustics vol. XVIII, edited by W. P. Mason and R. N. Thurston (Academic, San Diego, 1988), p.21–123.Google Scholar
  2. 2.
    S. J. Davies, C. Edwards, G. S. Taylor and S. B. Palmer, J. Phys. D: Appl. Phys., 26, 329 (1993).CrossRefGoogle Scholar
  3. 3.
    J. P. Monchalin, IEEE Trans. Ultrason. Ferroelectronics, Frequency Control UFFC-33, 485 (1986).Google Scholar
  4. 4.
    C. B. Scruby, Ultrasonics, 27, 195 (1989).CrossRefGoogle Scholar
  5. 5.
    G. Cachier, Appl. Phys. Lett., 17, 419 (1970).CrossRefGoogle Scholar
  6. 6.
    P. Cielo, F. Nadeau and M. Lamontagne, Ultrasonics, 23, 55 (1985).CrossRefGoogle Scholar
  7. 7.
    C. K. Jen, P. Cielo, F. Nadeau, J. Bussiere and G. W. Farnell, IEEE, Proc. Ultrason. Symp. Dallas, Texas, 660, (1984).Google Scholar
  8. 8.
    K. Yamanaka, Y. Nagata and T. Koda, Appl. Phys. Lett., 58, 1591 (1991).CrossRefGoogle Scholar
  9. 9.
    K. Yamanaka, Y. Nagata and T. Koda, in Review of Progress in Quantitative Nondestructive Evaluation Vol. 11, edited by O. D. Thompson and D. E. Chimenti (Plenum, New York, 1992), p. 633.CrossRefGoogle Scholar
  10. 10.
    Y. Tsukahara, Appl. Phys. Lett., 59, 2384 (1991).CrossRefGoogle Scholar
  11. 11.
    H. Nishino, Y. Tsukahara, Y. Nagata, T. Koda and K. Yamanaka, Appl. Phys. Lett., 62, 2036 (1993).CrossRefGoogle Scholar
  12. 12.
    H. Nishino, Y. Tsukahara, Y. Nagata, T. Koda and K. Yamanaka, Jpn. J. Appl. Phys., 32, 2536 (1993).CrossRefGoogle Scholar
  13. 13.
    K. Yamanaka, H. Nishino, Y. Tsukahara, Y. Nagata and T. Koda, to be presented at Ultrasonics International ‘83, Vienna, Austria 1993.Google Scholar
  14. 14.
    K. Yamanaka, H. Nishino, Y. Tsukahara, Y. Nagata and T. Koda, submitted to J. Appl. Phys.Google Scholar
  15. 15.
    D. E. Caddes, C. F. Quate and C. D. W. Wilkinson, Appl. Phys. Lett., 8, 309 (1966).CrossRefGoogle Scholar
  16. 16.
    e.g., F. J. Eberhardt and F. A. Andrews, J. Acoust. Soc. Am., 48, 603 (1970).CrossRefGoogle Scholar
  17. 17.
    E. L. Adler, C. K. Jen, G. W. Farnell and J. Slaboszewicz, Proc. of Ultrasonics International `85, King’s College London, United Kingdom, p.733–738, 1985.Google Scholar
  18. 18.
    J. Kushibiki and N. Chubachi, IEEE trans. Son. and Ultrason. SU-32, 189 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • H. Nishino
    • 1
  • Y. Tsukahara
    • 1
  • Y. Nagata
    • 2
  • T. Koda
    • 2
  • K. Yamanaka
    • 2
  1. 1.Technical Research InstituteToppan Printing Co., LTD.Sugito-machi, Kitakatsusika-gun, SaitamaJapan
  2. 2.Mechanical Engineering LaboratoryTsukuba, IbarakiJapan

Personalised recommendations