Advertisement

Quantitative Nondestructive Evaluation of Density of Green State Compressed Products

  • J. Muller
  • L. Ackermann
  • D. Babot
  • G. Peix
  • P. Zhu

Abstract

Industrial P/M products shapes are often complex and do not permit any density measurement by X-ray transmission. The local density at different locations (on several mm3, just after powder compression) is an essential parameter of the process, which governs the future mechanical properties of the final product (after sintering). In order to set up compression presses, operators need rapid assessments after each tool modification that has influenced local density distribution within the compressed piece. Currently, a statistical approach is used on the basis of manual measurements on broken products. Drawbacks are evident: operator dependent results, insufficient accuracy on the density (±0.05), time consuming procedure (20 minutes).

Keywords

Scattered Radiation Compton Scattering Zinc Stearate Recoil Electron Pycnometric Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Halmshaw, “Non-DestructiveTesting”, 2nd Edition (1991) pp 22–24Google Scholar
  2. 2.
    G. Berodias, G. Peix, Materials Evaluation, n°46, (August 1988), pp 1209–1213Google Scholar
  3. 3.
    “Radiographic inspection” in Nondestructive Evaluation and Quality Control, Metals Handbook 9th ed. Vol.17 (1989) p 309.Google Scholar
  4. 4.
    R.S. Holt, M.J. Cooper, British Journal of NDT, (March 1988) pp 75–80Google Scholar
  5. 5.
    C. Le Floch, P. Sarrazin, D. Babot, G. Peix, D. Duvauchelle, 17th Review of Progress in Quantitative NDE, SanDiego, California (USA), (15–20 Jul 1990), Ed. D. O. Thompson & D. E. Chimienti, PlenumGoogle Scholar
  6. 6.
    P.G. Lale, Phys.Med.Biol., Vol.4 (1959)Google Scholar
  7. 7.
    S.S. Shulkla, A. Karellas, I. Leichter, J.D. Craven, M.A. Greenfield, Medical Physics, vol.12, n°4 pp 447–448 (Jul-Aug 1985).CrossRefGoogle Scholar
  8. 8.
    K.H. Reiss, B. Steinle, Siemens Forschungs-and Entwicklungberichte,vol.2 n°1 pp 16–25.Google Scholar
  9. 9.
    H. Olkkonen, P. Karjalainen, British Journal of Radiology, N°48 (1975) 594–597.Google Scholar
  10. 10.
    J.T. Stalp, R.B. Mazess, Medical Physics vol.7 n°6, pp 723–726 (Nov-Dec 1980)CrossRefGoogle Scholar
  11. 11.
    J.A. Stockes, K.R. Alvar, R.L. Corey, D.G. Costello, J. John, S. Kocimski, N.A. Lurie, D.D. Thayer, A.P. Trippe and J.C. Young, Nuclear Instruments and Methods, N°193 (1982) pp 261–267.Google Scholar
  12. 12.
    R.H. Rossi, K.D. Fridell, J.M. Nelson, Mater. Eval., Vol.46(1988) pp 1462–1467.Google Scholar
  13. 13.
    B.C. Towe, A.M. Jacobs, IEEE Transactions on Biomedical Engineering, Vol.BME-28, (Sep1981) pp 646–654.CrossRefGoogle Scholar
  14. 14.
    G. Harding, H. Strecker, R. Tischler, Philips Technical Review, Vol.41 N0 2, (1983/84) pp 46–59.Google Scholar
  15. 15.
    C. Bachmann, Report INI-MF-10652 (24 May 1985) Techniche Hochschule Aachen.Google Scholar
  16. 16.
    S. Teller, J. Meyer, F. K. Kristtofersen, J.M. Farley, 4th European Conference on Nondestructive Testing, London UK (1988) pp 2156–2163.Google Scholar
  17. 17.
    T. Dudzus, C. Segebade, Materialprüfung, Vol.18 (Sep 1976) pp 336–338.Google Scholar
  18. 18.
    J.J. Battista, L.W. Santon, M.J. Bronskill, Physics in Medecine and Biology Vol. 22, n°2 (1977) pp 229–244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Muller
    • 1
  • L. Ackermann
    • 2
  • D. Babot
    • 3
  • G. Peix
    • 3
  • P. Zhu
    • 3
  1. 1.PECHINEY CRVVoreppeFrance
  2. 2.SINTERTECHPont de ClaixFrance
  3. 3.INSA DE LYONVilleurbanne CédexFrance

Personalised recommendations