Advertisement

Ultrasonic Characterization of Texture in Pure and Alloyed Zirconium

  • A. Moreau
  • P. J. Kielczynski
  • J. F. Bussière
  • J. H. Root

Abstract

Recently, we have developed a method to relate the angular dependence of ultrasonic velocities to the five expansion coefficients of the crystallographic orientation distribution function (CODF) of hexagonal materials with orthorhombic macroscopic symmetry.1 The ultrasonic velocity measurements are performed with an acoustic microscope on one, two, or three of the principal planes of symmetry using one or more ultrasonic modes. In this paper, the theory of ultrasonic measurement of texture is reviewed, and we present data showing that it can be applied to two-phase alloys, when the primary phase makes up most of the material.

Keywords

Neutron Diffraction Acoustic Measurement Acoustic Velocity Principal Plane Texture Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Kielczynski, A. Moreau, and J. F. Bussière, to be published in J. Acoust. Soc. Am.Google Scholar
  2. 2.
    Ryong-Joon Roe, J. Appl. Phys. 36, 2024 (1965).CrossRefGoogle Scholar
  3. 3.
    H.-J. Bunge, Kristall und Technik 3, 431 (1968).CrossRefGoogle Scholar
  4. 4.
    C. M. Sayers, Ultrasonics 24, 289 (1986).CrossRefGoogle Scholar
  5. 5.
    M. Hirao, K. Aoki, and H. Fukuoka, J. Acoust. Soc. Am. 81, 1434 (1987).CrossRefGoogle Scholar
  6. 6.
    C. M. Sayers, Ultrasonics 24, 289 (1986).CrossRefGoogle Scholar
  7. 7.
    Yan Li and R. Bruce Thompson, J. Appl. Phys. 67, 1(1990).CrossRefGoogle Scholar
  8. 8.
    B. A. Auld, “Acoustic Fields and Waves in Solids,” vol. 1, Krieger, Malabar, Florida, 1990.Google Scholar
  9. 9.
    P. J. Kielczynski, J. F. Bussière, J. H. Root, and D. Juul Jensen, Nondestr. Test. and Eval. 7, 497 (1992).CrossRefGoogle Scholar
  10. 10.
    Jun-Ichi Kushibiki and Noriyoshi Chubachi, IEEE Trans. Sonics Ultrason. SU-32, 189 (1985).CrossRefGoogle Scholar
  11. 11.
    I. A. Viktorov, “Rayleigh and Lamb waves. Physical Theory and Applications,” Plenum Press, New York, 1967.Google Scholar
  12. 12.
    Yusuke Tsukahara, Yongshen Liu, Christian Néron, C. K. Jeu, and Jun-Ichi Kushibiki, unpublished.Google Scholar
  13. 13.
    E. S. Fisher, C. J. Renken, Phys. Rev. 135, A482–A494 (1964).CrossRefGoogle Scholar
  14. 14.
    J. H. Root and A. Moreau, unpublished.Google Scholar
  15. 15.
    E. Walker and M. Peter, J. Appl. Phys. 48, 2820 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. Moreau
    • 1
  • P. J. Kielczynski
    • 2
  • J. F. Bussière
    • 1
  • J. H. Root
    • 3
  1. 1.National Research Council of CanadaIndustrial Materials InstituteBouchervilleCanada
  2. 2.Research and Productivity CouncilFrederictonCanada
  3. 3.AECL ResearchChalk River LaboratoriesChalk RiverCanada

Personalised recommendations