Advertisement

The Effects of Airway CO2 and Cooling on Ventilation and Upper Airway Resistance in Anaesthetized Rats

  • Aidan K. Curran
  • Kenneth D. O’Halloran
  • Aidan Bradford
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 360)

Abstract

Upper airway (UA) luminal CO2 modulates the activity of superior laryngeal nerve afferents (Boushey et al, 1974, Bradford et al, 1990) and affects breathing and UA muscle activity through a superior laryngeal nerve-mediated reflex (Nolan et al, 1990) Therefore, airway CO2 may influence the patency of the UA, especially in obstructive apnoea and other circumstances of altered UA CO2 concentration However, the effects of UA luminal CO2 on airway patency have not been studied

Keywords

Mucosal Blood Flow Superior Laryngeal Nerve Motor Nerve Activity Expiratory Time Peak Inspiratory Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson ,J. W., Sant’Ambrogio, F. B., Orani, G.P., Sant’Ambrogio, G &Mathew, O.P. (1990). Carbon dioxide-responsive laryngeal receptors in the dog. Respir. Physiol. 82: 217–226.PubMedCrossRefGoogle Scholar
  2. Bartlett Jr., D. &Knuth, S.L. (1992). Responses of laryngeal receptors to intralaryngeal CO2 in the cat. J. Physiol. 457: 187–193.PubMedGoogle Scholar
  3. Bartlett Jr., D., Knuth, S.L. &Gdovin, M.J. (1992a). Influence of laryngeal CO2 on respiratory activities of motor nerves to accessory muscles. Respir. Physiol. 90: 289–297.PubMedCrossRefGoogle Scholar
  4. Bartlett Jr., D., Knuth, S. L. &Leiter, J.C. (1992b). Alteration of ventilatory activity by intralaryngeal CO2 in the cat. J. Physiol. 457: 177–185.PubMedGoogle Scholar
  5. Boushey, H.A., Richardson, P.S., Widdicombe J.G. &Wise, J.C.N. (1974). The response of laryngeal afferent fibres to mechanical and chemical stimuli. J. Physiol. 240:153–175.PubMedGoogle Scholar
  6. Bradford, A., Nolan, P., McKeogh, D., Bannon, C. &O’Regan, R.G. (1990). The responses of superior laryngeal nerve afferent fibres to laryngeal airway CO2 concentration in the anaesthetized cat. Exp. Physiol. 75: 267–270.PubMedGoogle Scholar
  7. Orani, G.P., Anderson, J.W., Sant’Ambrogio, G. &Sant’Ambrogio, F. B. (1991). Upper airway cooling and 1-menthol reduce ventilation in the guinea pig. J. Appl. Physiol. 70 (5):2080–2086.PubMedGoogle Scholar
  8. Nolan, P., Bradford, A., O’Regan, R.G., &McKeogh, D. (1990) The effects of changes in laryngeal airway CO2 concentration on genioglossus muscle activity in the anaesthetized cat. Exp. Physiol. 75:271–274PubMedGoogle Scholar
  9. Sant’Ambrogio, G., Brambilla-Sant’ Ambrogio, F. &Mathew, O.P. (1986). Effect of cold air on laryngeal mechanoreceptors in the dog. Respir. Physiol. 64:45–56.CrossRefGoogle Scholar
  10. Ukabam, C.U., Knuth, S.L. &Bartlett Jr., D. (1992). Phrenic and hypoglossal neural responses to cold airflow in the upper airway. Respir. Physiol. 87, 157–164.PubMedCrossRefGoogle Scholar
  11. Wasicko, M.J., Leiter, J.C., Erlichman, J.S., Strobel, R.J. &Bartlett Jr., D. (1991). Nasal and pharyngeal resistance after topical mucosal vasoconstriction in normal humans. Am. Rev. Respir. Dis. 144: 1048–1052.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Aidan K. Curran
    • 1
  • Kenneth D. O’Halloran
    • 1
  • Aidan Bradford
    • 1
  1. 1.Department of PhysiologyRoyal College of Surgeons in IrelandDublin 2Ireland

Personalised recommendations