Skip to main content

Role of Intracellular pH and [Ca2+]i in Acid Chemoreception in Type-I Cells of the Carotid Body

  • Chapter
Arterial Chemoreceptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 360))

Abstract

Early theories of acid chemotransduction proposed that a fall in blood pH or rise in PCO2 excited afferent discharge from the carotid body through a direct action of extracellular pH upon the type-I cell or upon the nerve ending. This hypothesis was later amended to propose that the site of chemoreception was an intracellular one (Hanson et al.,. 1981). The shift in the proposed site of chemotransduction was based upon the key observation that the rate at which afferent discharge increased in response to a respiratory acidosis was dramatically slowed by membrane permeant carbonic anhydrase inhibitors (but not by impermeant ones). This suggested that the hydration of CO2 intracellularly to yield H+ i and HCO3-i was an important step in transduction. Torrance and colleagues (Hanson et al., 1981) also noted an interesting correlation between the transient effects of isohydric hypercapnia upon chemoreceptor discharge and the transient effects of this manoeuvre upon pHi in snail neurones. The similarities in behaviour between these two different systems led to the proposal that it was changes in pHi which drove the chemoreceptor response. These authors further speculated that a fall of pHi in the type-I cell might cause a rise in [Ca2+]i which would promote neurosecretion from the type-I cell, thus stimulating the nerve ending. It is now generally accepted that the type-I cell is the primary transducing element. Indeed acidic stimuli (as well as hypoxia) promote neurosecretion from the cell (Rigual et al., 1986). This chapter reviews the results of recent experiments into the regulation of pHj and the effects of acidic stimuli upon pHi, [Ca2+]i and electrical excitability in type-I cells. There is much new evidence to support Torrance’s original hypothesis and we present a model which delineates certain steps in the acid transduction pathway from a fall in pHi through to a rise in [Ca2+]i.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aickin, C.C. (1984) Direct measurement of intracellular pH and buffering power in smooth muscle cells of Guinea-pig vas deferens. J. Physiol. (Lond.) 349:571–585.

    CAS  Google Scholar 

  • Aickin, C.C. &Thomas, R.C. (1977) Microelectrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres. J. Physiol. (Lond.) 267:571–585.

    Google Scholar 

  • Alper, S.L. (1991). The band 3-related anion exchanger (AE) gene family. Ann. Rev. Physiol. 53:549–64.

    Article  CAS  Google Scholar 

  • Aronson, P. (1985). Kinetic properties of the plasma membrane Na+/H+ exchanger. Ann. Rev. Physiol. 47:545–60

    Article  CAS  Google Scholar 

  • Aronson, P., Nee, A. &Suhm, M.A. (1982). Modifier role of internal H+ in activating the Na+/H+ exchanger in renal microvillus membrane vesicles. Nature 299:161–163.

    Article  PubMed  CAS  Google Scholar 

  • Austin, C. &Wray, S. (1993). Extracellular pH signals affect rat vascular tone by rapid transduction into intracellular pH changes. J. Physiol. (Lond.) 466:1–8.

    CAS  Google Scholar 

  • Biscoe, T.J. &Duchen, M.R. (1990). Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J. Physiol. (Lond.) 428:39–59.

    CAS  Google Scholar 

  • Biscoe, T.J., Duchen, M.R., Eisner, D.A., O’Neil, S.C. &Valdeolmillos, M. (1989). Measurements of intracellular Ca2+ in dissociated type-I cells of the rabbit carotid body. J. Physiol. 416:421–434.

    PubMed  CAS  Google Scholar 

  • Black, A.M.S., McCloskey, D.I. &Torrance, R. W. (1971). The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnia and hypoxic stimuli. Respir. Physiol. 13:36–49.

    Article  PubMed  CAS  Google Scholar 

  • Bonanno, J.A. (1991). K+-H6 exchange, a fundamental cell acidifier in corneal epithelium. Am. J. Physiol. 260:C618–625.

    PubMed  CAS  Google Scholar 

  • Buckler, K.J. &Vaughan-Jones, R.D. (1994). Hypercapnia promotes membrane depolarisation and voltagegated calcium entry in rat carotid body type-I cells. J. Physiol. (Lond) submitted.

    Google Scholar 

  • Buckler, K.J. &Vaughan-Jones, R.D. (1993). Effects of acidic stimuli on intracellular calcium in isolated type-I cells of the neonatal rat carotid body. Pflugers Arch, (in press)

    Google Scholar 

  • Buckler, K.J., Vaughan-Jones, R.D., Peers, C., Lagadic-Gossmann, D. &Nye, P.C.G. (1991a). Effects of extracellular pH, PcO2 and HCO3- on intracellular pH in isolated type-I cells of the neonatal rat carotid body. J. Physiol. (Lond) 444:703–721.

    CAS  Google Scholar 

  • Buckler, K.J., Vaughan-Jones, R.D., Peers, C., &Nye, P.C.G. (1991b). Intracellular pH and its regulation in isolated type-I carotid body cells of the neonatal rat. J. Physiol. (Lond) 436:107–129.

    CAS  Google Scholar 

  • Buckler, K.J. &Vaughan-Jones, R.D. (1990). Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurements in small isolated cells. Pflugers. Arch. 417:234–239.

    Article  PubMed  CAS  Google Scholar 

  • Buckler, K.J., Nye, P.C.G, Peers, C. &Vaughan-Jones, R.D. (1990). Effects of simulated respiratory and metabolic acidosis/alkalosis on pHi in isolated type-I carotid body cells from the neonatal rat. J. Physiol. (Lond) 426:66P.

    Google Scholar 

  • Counillon, L. &Pouyssegur, J. (1993). Molecular biology and hormonal regulation of vertebrate Na+/H+ exchanger isoforms. In “Molecular biology and function of carrier proteins.” Soc. Gen. Physiol. Vol 48. L. Reuss, J.M. Russell &M.L. Jennings, ed.. Rockerfeiler University Press, New York.

    Google Scholar 

  • Donnelly, D.F. &Kholwadwala, D. (1992). Hypoxia decreases intracellular calcium in adult rat carotid body glomus cells. J. Neurophysiol. 67:1543–1551.

    PubMed  CAS  Google Scholar 

  • Ellis, D. &Thomas, R.C. (1976) Microelectrode measurement of the intracellular pH of mammalian heart cells. Nature 262:224–225.

    Article  PubMed  CAS  Google Scholar 

  • Fidone, S., Gonzalez, C., and Yoshizaki, K (1982). Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J. Physiol.(Lond) 333:93–110.

    CAS  Google Scholar 

  • Fonteriz, R.I., Vaughan-Jones, R.D. &Lagadic-Gossmann, D.L. (1993). Hypoxia inhibits acid extrusion from the guinea-pig isolated ventricular myocytes. J. Physiol. (Lond.) 467:277P.

    Google Scholar 

  • Gonzalez, C., Almarez, L., Obeso, A. &Rigual, R. (1992). Oxygen and acid chemotransduction in the carotid body chemoreceptors. TINS 15:146–153.

    PubMed  CAS  Google Scholar 

  • Gray, B.A. (1968). Responses of the perfused carotid body to changes in pH and pCO2-Respir. Physiol. 4:580–584.

    Google Scholar 

  • Hanson, M.A., Nye, P.C.G. &Torrance, R.W. (1981) The exodus of an extracellular bicarbonate theory of chemoreception and the genesis of an intracellular one. In: “Arterial chemoreceptors”. C. Belmonte, D.J. Pallot, H. Acker &S. Fidone. ed. Leicester University Press, Leicester (1981).

    Google Scholar 

  • He, S.-F., Wei, J.-H. &Eyzaguirre, C. (1991). Intracellular pH and some membrane characteristics of cultured carotid body glomus cells. Brain Res. 547:258–266.

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga, R. &Lahiri, S. (1991). Carotid body chemoreception in the absence and presence of CO2-HCO3-. Brain Res. 568:253–260.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lopez, J., Gonzalez, C., Urena, J. &Lopez-Barneo, J. (1989). Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body. J. Gen. Physiol. 93:1001–1015.

    Article  PubMed  CAS  Google Scholar 

  • Peers, C. (1990). Selective effects of extracellular pH on Ca2+-dependent K-currents in type-I cells isolated from the neonatal rat carotid body. J. Physiol.(Lond.) 422:381–395.

    CAS  Google Scholar 

  • Peers, C. &Green, F.K. (1991). Inhibition of Ca2+-activated K+ currents by intracellular acidosis in isolated type-I cells of the neonatal rat carotid body. J. Physiol.(Lond.) 437:589–602.

    CAS  Google Scholar 

  • Richmond, P. &Vaughan-Jones, R.D. (1993). K+-H+ exchange in isolated carotid body type-I cells of the neonatal rat is caused by nigericin contamination. J. Physiol. (Lond.) 467:277P.

    Google Scholar 

  • Rigual, R., Lopez-Lopez, J.R. &Gonzalez, C. (1991). Release of dopamine and chemoreceptor discharge induced by low pH and high pCO2 stimulation of the cat carotid body. J. Physiol.(Lond.) 433:519–531.

    CAS  Google Scholar 

  • Rigual, R., Gonzalez, E., Gonzalez, C. &Fidone, S. (1986). Synthesis and release of catecholamines by the cat carotid body in vitro: Effects of hypoxic stimulation. Brain Res. 374:101–109.

    Article  PubMed  CAS  Google Scholar 

  • Rocher, A., Obeso, A., Gonzalez, C. &Herreros, B. (1991). Ionic mechanisms for the transduction of acidic stimuli in rabbit carotid body glomus cells. J. Physiol. 433:533–548.

    PubMed  CAS  Google Scholar 

  • Roos, A. &Boron, W.F. (1981). Intracellular pH. Physiol. Rev. 61:296–434.

    PubMed  CAS  Google Scholar 

  • Stea, A., Alexander,S.A. &Nurse, C.A. (1991). Effects of pHi and pHo on membrane currents recorded with the perforated-patch method from cultured chemoreceptors of the rat carotid body. Brain Res. 567:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Stea, A., &Nurse, C.A. (1989). Chloride channels in cultured glomus cells of the rat carotid body. Am. J. Physiol. 257:C174–C181.

    PubMed  CAS  Google Scholar 

  • Tolkovsky, A.M. &Richards, C.D. (1987) Na+/H+ Exchange is the major mechanism of pH regulation in cultured sympathetic neurones: measurements in single cell bodies and neuntes using a fluorescent pH indicator. Neurosci. 22:1093–1102.

    Article  CAS  Google Scholar 

  • Vaughan-Jones, R.D. &Wu, M-L. (1990). Extracellular H+ inactivation of Na+/H+ exchange in the sheep cardiac Purkinje fibre. J. Physiol. 428:441–466

    PubMed  CAS  Google Scholar 

  • Vaughan-Jones, R.D. (1986) An investigation of chloride-bicarbonate exchange in the sheep cardiac purkinje fibre. J. Physiol. (Lond.) 379:377–406.

    CAS  Google Scholar 

  • Urena, J., Lopez-Lopez, J., Gonzalez, C. &Lopez-Barneo, J. (1989) Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body. J. Gen. Physiol. 93:979–999.

    Article  PubMed  CAS  Google Scholar 

  • Wilding, T.J., Cheng, B. &Roos, A. (1992). pH regulation in adult rat carotid body glomus cells. J. Gen. Physiol. 100:593–608.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buckler, K.J., Vaughan-Jones, R.D. (1994). Role of Intracellular pH and [Ca2+]i in Acid Chemoreception in Type-I Cells of the Carotid Body. In: O’Regan, R.G., Nolan, P., McQueen, D.S., Paterson, D.J. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 360. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2572-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2572-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6099-5

  • Online ISBN: 978-1-4615-2572-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics