Skip to main content

Mechanisms of Carotid Body Inhibition

  • Chapter
Book cover Arterial Chemoreceptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 360))

Abstract

Some 25 years ago, Neil & O’Regan (1969, 1971) and Fidone & Sato (1970) demonstrated that electrical stimulation of the peripheral cut end of the carotid sinus nerve (CSN) inhibited spontaneous chemoreceptor activity recorded from nerve filaments split off from the main CSN trunk. These findings complemented the contemporary studies of Biscoe & Sampson (1968), who recorded spontaneous centrifugal neural activity from the central stump of the nerve, indicating the likely presence of an efferent or motor pathway in the CSN. Except for the finding that “efferent inhibition” of chemoreceptor discharge was mediated by unmyelinated, or C-fibers (Fidone & Sato, 1970), very little information has been forthcoming regarding the identity of the neurons or their mechanism of action in mediating this physiological phenomenon (O’Regan & Majcherczyk, 1983). McDonald & Mitchell (1981) postulated that efferent inhibition of the chemoreceptors was mediated by antidromic activity in afferent petrosal ganglion neurons, because the inhibitory effects persisted following chronic decentralization and sympathectomy. However, it was later pointed out that these careful surgical procedures would not have eliminated a group of presumptive autonomic neurons, first described by de Castro in 1926, which are present within the carotid body and along the CSN (see O’Regan & Majcherczyk, 1983, for review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belmonte, C. &Eyzaguirre, C. (1974) Efferent influences on carotid body chemoreceptors. J. Neurophysiol. 37:1131–1143.

    PubMed  CAS  Google Scholar 

  • Biscoe, T.J. &Sampson, S.R. (1968) Rhythmical and non-rhythmical spontaneous activity recorded from the central cut end of the sinus nerve. J. Physiol. (Lond.) 196:327–338.

    CAS  Google Scholar 

  • Bredt, D.S. &Snyder, S.H. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. USA 86:9030–9033.

    Article  PubMed  CAS  Google Scholar 

  • Bredt, D.S. &Snyder, S.H. (1992) Nitric oxide, a novel neuronal messenger. Neuron 8:3–11.

    Article  PubMed  CAS  Google Scholar 

  • De Castro, F. (1926) Sur la structure el l’innervation de la glande intercarotidienne (glomus caroticum) de rhomme et des mammiferes, et sur un nouveau Systeme d’innervation autonome du nerf glosopharyngien. Trabajos Lab. Invest. Biol. Univ. Madrid 24:365–432.

    Google Scholar 

  • Fidone, S.J. &Sato, A. (1970) Efferent inhibition and antidromic depression of chemoreceptor A-fibers from the cat carotid body. Brain Res. 22:181–193.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, H. &Yamamoto, M. (1988) Occurrence, ontogeny, ultrastructure and some plasticity of CGRP (calcitonin gene-related peptide)-immunoreactive nerves in the carotid body of rats. Brain Res. 473:283–293.

    Article  PubMed  CAS  Google Scholar 

  • Kummer, W. &Fischer, A. (1990) Tachykininergic axons in the guinea pig carotid body: origin, ultrastructure and coexistence with other peptides. In “Arterial Chemoreception,” C. Eyzaguirre, S.J. Fidone, R.S. Fitzgerald, S. Lahiri &D.M. McDonald, Springer-Verlag, New York, pp. 229–234.

    Chapter  Google Scholar 

  • McDonald, D.M. &Mitchell, R.A. (1981) The neural pathway involved in “efferent inhibition” of chemoreceptors in the cat carotid body. J. Comp. Neurol. 201:457–476.

    Article  PubMed  CAS  Google Scholar 

  • Neil, E. &O’Regan R.G. (1969) Effects of sinus and aortic nerve efferents on arterial chemoreceptor function. J. Physiol. (Lond.) 200:69P–71P.

    CAS  Google Scholar 

  • Neil, E. &O’Regan R.G. (1971) The effects of electrical stimulation of the distal end of the carotid sinus and aortic nerve on peripheral arterial chemoreceptor activity in the cat. J. Physiol. (Lond.) 215:15–32.

    CAS  Google Scholar 

  • O’Regan, R.G. &Majcherczyk, S. (1983) Control of peripheral chemoreceptors by efferent nerves. In “Physiology of the Peripheral Arterial Chemoreceptors.” H. Acker &R.G. O’Regan, eds., Elsevier, pp. 257–298.

    Google Scholar 

  • Stensaas, L.J. &Fidone, S.J. (1977) An ultrastructural study of cat petrosal ganglia: a search for autonomic ganglion cells. Brain Res. 124:29–39.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W.-J., Cheng, G.-F., Yoshizaki, K., Dinger, B. &Fidone, S. (1991a) The role of cyclic AMP in chemoreception in the rabbit carotid body. Brain Res. 540:96–104.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W.-J., He, L., Chen, J, Dinger, B. &Fidone, S. (1993a) Mechanisms underlying chemoreceptor inhibition induced by atrial natriuretic peptide in rabbit carotid body. J. Physiol. 460:427–441.

    PubMed  CAS  Google Scholar 

  • Wang, Z.-Z. ,Bredt, D.S., Fidone, S.J. &Stensaas, L.J. (1993b) Neurons synthesizing nitric oxide innervating the carotid body. J. Comp. Neurol. 336:419–432.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z.-Z., Bredt, D.S., Dinger, B.G., Fidone, S.J. &Stensaas, L.J. (1993c) Localization and actions of nitric oxide in the cat carotid body. Neurosci. (in press).

    Google Scholar 

  • Wang, Z.-Z. ,He, L., Stensaas, L.J., Dinger, B.G. &Fidone, S.J. (1991b) Localization and in vitro actions of atrial natriuretic peptide in the cat carotid body. J. Appl. Physiol. 70:942–946.

    PubMed  CAS  Google Scholar 

  • Wang, Z.-Z., Stensaas, L.J., Wang, W.-J., Dinger, B., de Vente, J. and Fidone, S.J. (1992) Atrial natriuretic peptide increases cyclic guanosine monophosphate immunoreactivity in the carotid body. Neurosci. 49:479–486.

    Article  CAS  Google Scholar 

  • Yamamoto, A., Kimura, S., Hasui, K., Fujisawa, Y., Tamaki, T., Fukui, K., Iwao, H. &Yonichi, A. (1988) Calcitonin gene-related peptide (CGRP) stimulates the release of atrial natriuretic peptide (ANP) from isolated rat atria. Biochem. Biophys. Res. Comm. 155:1452–1458.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, ZZ., Stensaas, L.J., Bredt, D.S., Dinger, B.G., Fidone, S.J. (1994). Mechanisms of Carotid Body Inhibition. In: O’Regan, R.G., Nolan, P., McQueen, D.S., Paterson, D.J. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 360. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2572-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2572-1_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6099-5

  • Online ISBN: 978-1-4615-2572-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics