Electrotonic Coupling between Carotid Body Glomus Cells

  • L. Monti-Bloch
  • Veronica Abudara
  • C. Eyzaguirre
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 360)


The carotid body detects chemical changes in the blood such as PO2, PCO2 and pH, and generates afferent discharges in the carotid nerve. During stimulation, the glomus cells release endogenous substances (ACh, catecholamines, and neuropeptides) toward the carotid nerve terminals. To understand how secretion occurs, we have studied the electric connections between glomus cells at rest and during activity elicited by ‘natural’ stimuli, or the transmitters (Monti-Bloch et al., 1990, 1993). In other secretory organs, adjoining cells are electrically coupled and they uncouple (fully or partially) during secretion (for refs. see Bennett & Spray, 1985; Hertzberg & Johnson, 1988; Bennett et al., 1991).


Lactic Acid Carotid Body Sodium Dithionite Glomus Cell Secretory Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, M.V.L.(1966). Physiology of electronic junctions. Ann. N. Y. Acad. Sci. 137:509–539PubMedCrossRefGoogle Scholar
  2. Bennett, M.V.L., Barrio, L. C., Bargiello, T. A., Spray, D. C., Hertzberg, E. &Saez, J. C. (1991). Gap junctions : New tools, new answers, new questions. Neuron 6:305–320.PubMedCrossRefGoogle Scholar
  3. Bennett, M.V.L. &Spray, D. C. (1985). “Gap Junctions”, Cold Spring Harbor Laboratory.Google Scholar
  4. Biscoe, T. J., Duchen, M. R., Eisner, D. A., O’Neill, S. C. &Valdeolmillos, M. (1989). Measurements of intracellular Ca2+ in dissociated type I cells of the rabbit carotid body. J. Physiol. (Lond.) 416:421–434.Google Scholar
  5. Buckler, K. J., Vaughan-Jones, R. D., Peers, C. &Nye, P. C. G. (1991). Intracellular pH and its regulation in isolated type I carotid body cells of the neonatal rat. J. Physiol. (Lond.) 436:107–129.Google Scholar
  6. Donnelly, D. F. &Kholwadwala, D. (1992). Hypoxia decreases intracellular calcium in adult rat carotid body glomus cells. J. Neurophysiol. 67:1543–1551.PubMedGoogle Scholar
  7. Eyzaguirre, C., Monti-Bloch, L., Baron, M., Hayashida, Y. &Woodbury, J. L., (1989). Changes in glomus cell membrane properties in response to stimulants and depressants of carotid nerve discharge. Brain Res. 477:265–279.PubMedCrossRefGoogle Scholar
  8. Eyzaguirre, C., Monti-Bloch, L. &Woodbury, J. W. (1990). Effects of putative neurotransmitters of the carotid body on its own glomus cells. Eur. J. Neurosci. 2:77–88.PubMedCrossRefGoogle Scholar
  9. Fidone, S. J. &Gonzalez, C. (1986). Initiation and control of chemoreceptor activity in the carotid body, In: Handbook of Physiology, The Respiratory System, Vol. II, sect 3, Am Physiol. Soc., Bethesda, MD.Google Scholar
  10. Flagg-Newton, J. L., Dahl, G &Loewenstein, W. R. (1981). Cell junction and cyclic AMP. I. Upregulation of junctional membrane permeability and junctional membrane particles by cyclic nucleotide treatments. J. Membr. Biol. 63:105–121.PubMedCrossRefGoogle Scholar
  11. Hax, W. M. A., Van Venrooji, G. E. &Vossenberg, J. B. (1974). Cell communication: A cyclic AMP-mediated phenomenon. J. Membr. Biol. 19:253–266.PubMedCrossRefGoogle Scholar
  12. He, S.-F., Wei, J.-Y. &Eyzaguirre, C. (1990). Intracellular pH of cultured carotid body cells. In “Arterial Chemoreception”, C. Eyzaguirre, S. J. Fidone, R. S. Fitzgerald, S. Lahiri and D. M. McDonald, eds., SpringerVerlag, New York.Google Scholar
  13. He, S.-F., Wei, J.-Y. &Eyzaguirre, C. (1991a). Intracellular pH and some membrane characteristics of cultured carotid body cells. Brain Res. 547:258–286.PubMedCrossRefGoogle Scholar
  14. He, S.-F., Wei, J.-Y. &Eyzaguirre, C. (1991b). Effects of relative hypoxia and hypercapnia on intracellular pH and membrane potential of cultured carotid body cells. Brain Res. 556:333–338.PubMedCrossRefGoogle Scholar
  15. Hertzberg, E. L. &Johnson, R. G. (1988). Gap Junctions. In “Modern Cell Biology”, vol. 7, Alan R. Liss, New York.Google Scholar
  16. Iturriaga, R., Rumsey, W. L., Lahiri, S., Spergel, D. &Wilson, D. F. (1992). Intracellular pH and oxygen chemoreception in the cat carotid body in vitro. J. Appl. Physiol. 72:2259–2262.PubMedGoogle Scholar
  17. Kessler, J. A., Spray, D. C., Saenz, J. C. &Bennett, M. V. L. (1985). Development and regulation of electrotonic coupling between cultured sympathetic neurons. In “Gap Junctions”, M. V. L. Bennett and D. C. Spray, eds Cold Spring Harbour Laboratory.Google Scholar
  18. Lasater, E. M. &Dowling, J. E. (1985). Electric coupling between pairs of isolated fish horizontal cells is modulated by dopamine and cAMP. In “Gap Junctions”, M. V. L. Bennett and D. C. Spray, eds., Cold Spring Harbour Laboratory.Google Scholar
  19. McDonald, D. M. (1991. Peripheral chemoreceptors: structure-function relationships of the carotid body. In “Regulation ofBreathing”, T. F. Hornbein, ed., vol. 17 of “Lung Biology in Health and Disease”. C. Lenfant, exec, ed., Marcel Decker, New York.Google Scholar
  20. Monti-Bloch, L. &Eyzaguirre, C. (1990). Effects of natural stimuli, chemical agents and transmitters on glomus cell membranes and intracellular communications. In “Arterial Chemoreception”, C. Eyzaguirre, S. J. Fidone, R. S. Fitzgerald, S. Lahiri and D. M. McDonald, eds., Springer-Verlag, New York.Google Scholar
  21. Monti-Bloch, L., Abudara, V. &Eyzaguirre, C. (1993). Electrical communication between glomus cells of the rat carotid body. Brain Res. in press.Google Scholar
  22. Neyton, J., Piccolino, M. &Gerschenfeld, H. M. (1985). Neurotransmitter-induced modulation of gap junction permeability in retinal horizontal cells. In “Gap Junctions”, M. V. L. Bennett and D. C. Spray, eds., Cold Spring Harbour Laboratory.Google Scholar
  23. Sato, M., Ikeda, K., Yoshizaki, K. &Koyano, H. (1991). Response of cytosolic calcium to anoxia and cyanide in cultured glomus cells of newborn rabbit carotid body. Brain Res. 551:327–330.PubMedCrossRefGoogle Scholar
  24. Sperelakis, N. &Cole, W. C. (1989). “Cell Interations and Gap Junctions”, CRC Press.Google Scholar
  25. Spray, D. C. &Bennett, M. V. L. (1985). Physiology and pharmacology of gap junctions. Ann. Rev. Physiol. 47:281–303.CrossRefGoogle Scholar
  26. Wang, W. J., Cheng, G. F., Yoshizaki, K., Dinger, B. &Fidone, S. (1991). The role of cyclic AMP in chemoreception in the rabbit carotid body. Brain Res. 540:96–104.PubMedCrossRefGoogle Scholar
  27. Wilding, T. J., Cheng, B. &Roos, A. (1992). pH regulation in adult rat carotid body glomus cells. J. Gen. Physiol. 100:593–608.PubMedCrossRefGoogle Scholar
  28. Zhang, X.-Q., Pang. L. &Eyzaguirre, C. (1992). Effects of hypoxia induced by Na2S2O4 on K+ and Ca2+ activities of cultured carotid body glomus cells. Soc. Neurosci. Abstr. 18:1198.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • L. Monti-Bloch
    • 1
    • 2
  • Veronica Abudara
    • 1
    • 2
  • C. Eyzaguirre
    • 1
  1. 1.Department of PhysiologyUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.Department of Physiology, Facultad de MedicinaUniversidad de la RepublicaMontevideoUruguay

Personalised recommendations