Nonlinear Optical Materials for Integrated Optics

  • C. Flytzanis


Despite progress in nonlinear waveguided optics1,2 over the last two decades the implementation of related devices in large scale technology is still not satisfactory. This can be traced to several causes, both structural and conceptual, but the most severe cause is the inadequate present performance3 of nonlinear optical materials. Nature has not been generous with the optical nonlinearities of bulk optical materials; in the case of integrated nonlinear optics the situation is aggravated by additional requirements1,2 on the materials such as processability, adaptability and interfacing with other materials. These additional requirements are intrinsic to the fabrication of nonlinear integrated devices, which besides efficiently performing the expected nonlinear operation, must be miniaturized, compact, reliable and with precisely reproducible characteristics in large scale production and long term operation. These problems acquire a particular twist because one of the goals of ongoing research and development is the replacement of integrated electronic devices by optical ones. However, progress in electronics has been remarkable over the last decade and seemingly does not show any signs of fatigue; standards and priorities there are well established and a consensus about future targets has been established. This competition with integrated electronics however has guided nonlinear integrated optics towards a development path that does not allow full exploitation of the intrinsic advantages of optics.


Guest Molecule Order Polarization Order Nonlinearity Nonlinear Optical Material Nonlinear Optical Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for instance, “Guided Wave Nonlinear Optics.” D.B. Ostrowsky and R. Reinisch, Eds, NATO ASI Series, Kluwer Publ., Dordrecht 1992.Google Scholar
  2. 2.
    See, for instance, “Nonlinear Optical Materials and Devices and their Applications in Information Technology”, A. Miller, B. Daino and K. Welford, Eds, NATO ASI Series, Kluwer Publ., Dordrecht 1993 (to appear).Google Scholar
  3. 3.
    See, for instance, “Nonlinear Optics; Materials and Devices”, C. Flytzanis and J.L. Oudar, Eds, Springer Verlag, Berlin 1986.Google Scholar
  4. 4.
    See, for instance, “Nonlinear Optical Materials Principles and Applications”, V. Degiorgio and C. Flytzanis, Eds, North Holland Co. Amsterdam 1994.Google Scholar
  5. 5.
    See, for instance, Y.R. Shen, “Principles of Nonlinear Optics”, J. Wiley, New York 1984.Google Scholar
  6. 6.
    C. Flytzanis in “Quantum Electronics: a Treatise”, Vol. 1a, H. Rabin and C.L. Tang, Eds, Academic Press, New York 1975.Google Scholar
  7. 7.
    See, for instance, C. Flytzanis in Ref. 2.Google Scholar
  8. 8.
    See, for instance, A. Yariv, “Introduction to Optical Electronics”, Holt Rinehart and Winston, New York 1971.Google Scholar
  9. 9.
    See, for instance, G. Stegeman in Ref. 2 or G. Assanto in Ref. 4.Google Scholar
  10. 10.
    C. Flytzanis, F. Hache, M.C. Klein, D. Ricard and Ph. Roussignol, in “Progress in Optics”, Vol. XXIX, E. Wolf, Ed, Elsevier, Amsterdam 1991, p. 321–411 See also D. Ricard in Ref. 4.Google Scholar
  11. 11.
    See, for instance, “Principles and Applications of Ferroelectrics and Related Materials”, M.E. Lines and A.M. Glass, Clarendon Press, Oxford 1979.Google Scholar
  12. 12.
    D. Miller, Appl. Phys. Lett. 5, 17 (1964).CrossRefGoogle Scholar
  13. 13.
    C. Flytzanis and J. Ducuing, Phys. Rev. 178, 1218 (1969).CrossRefGoogle Scholar
  14. 14.
    See, for instance, C. Kittel, “Introduction to Solid State Physics”, J. Wiley, New York 1984.Google Scholar
  15. 15.
    C. Flytzanis and C.L. Tang, Phys. Rev. B4, 2520 (1971).Google Scholar
  16. 16.
    See, for instance, “The Physics and Fabrication of Microstructures and Microdevices”, M.J. Kelly and C. Weisbuch, Eds, Springer Verlag, Berlin 1988; “Quantum Semiconductor Structures: Fundamentals and Applications”, Academic Press New York 1991.Google Scholar
  17. 17.
    See J. Bierlein in Ref. 1; F.C Zumsteg, J.D. Bierlein and T.E. Dier, J. App. Phys. 47, 4986 (1976); for a recent review see, for instance, F. Bordui and M.M. Fejer, Ann. Rev. Mat. Sci. 23, 321 (1993); G.I. Chen and G.Z Liu, Ann. Rev. Mat. Sci. 16, 203 (1986).Google Scholar
  18. 18.
    See C.L. Tang in Ref. 4.Google Scholar
  19. 19.
    See, for instance, “Nonlinear Optical Properties of Organic Molecules and Crystals”, Vols. 1 and 2, D.S. Chemla and J. Zyss, Eds, Academic Press, New York 1987.Google Scholar
  20. 20.
    See, for instance, “Organic Molecules for Nonlinear Optics and Photonics” J. Messier, F. Kajzar and P. Prasad, Eds, NATO ASI Series Kluwer, Publ. 1991; P.N. Prasad and D.J. Williams, “Introduction to Nonlinear Optical Effects in Molecules and Polymers”, J. Wiley Interscience, New York 1990.Google Scholar
  21. 21.
    See, for instance, “Principles and Applications of Nonlinear Optical Materials”, R.W. Munn and C.N. Ironside, Eds, Blackie Academic, London 1993.Google Scholar
  22. 22.
    B. Davydov, L. Derkacheva, L.D. Duna, V.V Zhabotinskii and M.E. Zolin, Sov. Phys. JETP. Lett. 12, 16 (1970).Google Scholar
  23. 23.
    G.R. Meredith, J.G. Van Dusen and D.J. Williams, Macromolecules 15, 1385 (1982).CrossRefGoogle Scholar
  24. 24.
    K.D. Singer, J. E. Sohn and J. Lalama, Appl. Phys. Lett. 49, 248 (1986).CrossRefGoogle Scholar
  25. 25.
    See Mohlmann in Ref. 4.Google Scholar
  26. 26.
    J. Zyss, J.F. Nicoud and D.S. Chemla, J. Chem. Phys. 74, 4800 (1981).CrossRefGoogle Scholar
  27. 27.
    J.L. Oudar and R. Hierle, J. Appl. Phys. 48, 2699 (1977).CrossRefGoogle Scholar
  28. 28.
    B.F. Levine, C.G. Bethea, C.D. Thurmond, R.T. Lynch and J.L. Bernstein, J. Appl. Phys. 50, 2523 (1979).CrossRefGoogle Scholar
  29. 29.
    J. Zyss, J.F. Nicoud, and M. Coquillay, J. Chem. Phys. 81, 4160 (1984); R. Mase and J. Zyss, Mol. Eug. 1, 141 (1991).CrossRefGoogle Scholar
  30. 30.
    J.M. Halbout, S. Blit, W. Donaldson and C.L. Tang, EEE J. Quant. Electr. 15, 1176 (1979).CrossRefGoogle Scholar
  31. 31.
    V. Osterberg and W. Margulis, Opt. Lett. 11, 516 (1986).CrossRefGoogle Scholar
  32. 32.
    R.A. Myers, N. Mukherjee and S.R.J. Brueck, Opt. Lett. 16, 1734 (1991).CrossRefGoogle Scholar
  33. 33.
    See also J. Kajzar in Ref. 1.Google Scholar
  34. 34.
    M.C.J. Donckers, S.M. Silence, C.A. Walsh, F. Hache, D.M. Burlaud, W.E. Moerner and R.J. Twieg, Opt. Lett. 18, 144 (1993).CrossRefGoogle Scholar
  35. 35.
    R.H. Stolen and H. Tom, Opt. Lett. 12, 587 (1987); D.Z. Audersson, V. Mizcahi and J.E. Sipe, ibid. 16, 796 (1991).CrossRefGoogle Scholar
  36. 36.
    G.P. Agrawal and C. Flytzanis, Chem. Phys. lett. 44, 366 (1976), G.P. Agrawal, Cojan and C. Flytzanis, Phys. Rev. B17, 776 (1978).CrossRefGoogle Scholar
  37. 37.
    See, C. Flytzanis in Ref. 19, also M. Cardona and F.H. Pollack in Optoelectronic Materials, G.A. Albers, Ed, Plenum, New York 1971.Google Scholar
  38. 38.
    See, for instance, “Optical Nonlinearities and Instabilities in Semiconductors” H. Haug, Ed, Academic Press, New York 1988.Google Scholar
  39. 39.
    S. Schmitt-Rink, D.S. Chemla and D.A.B. Miller, Adv. Phys. 38, 89 (1989).CrossRefGoogle Scholar
  40. 40.
    B.I Greene, J. Orenstein and S. Schmitt-Rink, Science 247, 679 (1990).CrossRefGoogle Scholar
  41. 41.
    E. Yablonovitch, C. Flytzanis and N. Bloembergen, Phys. Rev. Lett. 29, 865 (1972).CrossRefGoogle Scholar
  42. 42.
    G.I. Stegeman, M. Sheik-Bahae, E. Van Stryland and G. Assanto, Opt. Lett. 18, 13 (1993).CrossRefGoogle Scholar
  43. 43.
    See, for instance, C. Flytzanis and J. Hutter in “Contemporary Nonlinear Optics”, G.P. Agrawal and R.W. Boyd, Eds, Academic Press, New York 1992.Google Scholar
  44. 44.
    J.J. Wynne, Phys. Rev. 178, 1295 (1969).CrossRefGoogle Scholar
  45. 45.
    D. Weaire, B.S. Wherett, D.A.B. Miller and S.D. Smith, Opt. Lett. 4, 331 (1979); A. Miller, D.A.B. Seaton and S.D. Smith, Phys. Rev. Lett. 47, 197 (1981).CrossRefGoogle Scholar
  46. 46.
    B.S. Wherett, Proc. Roy. Soc. (London) A390, 373 (1983).Google Scholar
  47. 47.
    D. Ricard, Ph. Roussignol and C. Flytzanis, Opt. Lett. 10, 511 (1985), K.C. Rustagi and C. Flytzanis, Appl. Phys. Lett. 2, 344 (1984).CrossRefGoogle Scholar
  48. 48.
    F. Hache, D. Ricard, C. Flytzanis and U. Kreibig, Appl. Phys. Lett. A47, 347 (1988).Google Scholar
  49. 49.
    A.I.L. Efros and A.L Efros, Sov. Phys. Semic. 16, 772 (1982).Google Scholar
  50. 50.
    D.A.B. Miller, D.S. Chemla and S. Schmitt-Rink, Phys. Rev. B35, 8113 (1987).Google Scholar
  51. 51.
    Ph. Roussignol, D. Ricard, J. Lukasik and C. Flytzanis J. Opt. Soc. Am. B4, 5 (1987).Google Scholar
  52. 52.
    See, for instance, G. Wegner, Makromol. Chem. 154, 35 (1971); see also Refs 20 and 21.CrossRefGoogle Scholar
  53. 53.
    C. Sauteret, J.P. Hermann, R. Frey, F. Pradere, J. Ducuing, R.R. Chance and R.H. Baughman, Phys. Rev. Lett. 36, 956 (1976).CrossRefGoogle Scholar
  54. 54.
    B.I. Greene et al, Phys. Rev. Lett. 61, 325 (1988), G.J. Blanchard et al, ibid 63, 887 (1989).CrossRefGoogle Scholar
  55. 55.
    See J. Frey, R. Frey and C. Flytzanis in Ref. 1.Google Scholar
  56. 56.
    J. Frey, R. Frey and C. Flytzanis, Phys. Rev. B45, 4056 (1992).Google Scholar
  57. 57.
    See, for instance, J.K. Furdyna, Appl. Phys. 64, R29 (1988).CrossRefGoogle Scholar
  58. 58.
    H. Ashitaka, Y. Yokoh, R. Shimizu, T. Yohozawa, K. Morita, T. Snehiro and Y. Matsumoto, Nonlinear Optics 4, 281 (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. Flytzanis
    • 1
  1. 1.Laboratoire d’Optique Quantique, Ecole PolytechniquePalaiseau cédexFrance

Personalised recommendations