Isolation of Expressed Sequences from the Chromosome 17q21 BRCA1 Region by Magnetic Bead Capture

  • Fergus J. Couch
  • Barbara L. Weber
  • Francis S. Collins
  • Danilo A. Tagle

Abstract

Magnetic bead capture of cDNAs utilizes biotin-streptavidin magnetic bead technology to isolate expressed sequences from large genomic regions, resulting in several thousand-fold enrichment of selected cDNAs. The technique allows parallel analysis of several genomic segments of varying complexity. Expressed sequences from a variety of tissue sources can also be identified simultaneously. To evaluate this approach, we have applied it to pools of cosmid clones from the interval on chromosome 17q21 which contains the familial early onset breast cancer gene (BRCA1). We describe the characterization of 9 potentially unique cDNAs which were isolated from one pool of 7 minimally overlapping cosmids representing a subset of the BRCA1 candidate region. Overall, the method is shown to detect a large fraction of coding sequences in cosmid clones. Advantages and limitations of the approach are discussed.

Keywords

Formaldehyde Agarose Immobilization Boiling Nylon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Liu, R. Legerski, and M.J. Siciliano, Isolation of human transcribed sequences from human-rodent somatic cell hybrids, Science 246:813 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    G.M. Duyk, S.W. Kim, R.M. Myers, and D.R. Cox, Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA, Proc. Natl. Acad. Sci. USA 87:8995 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    A.J. Buckler, D.D. Chang, S.L. Graw, J.D. Brook, D.A. Haber, P.A. Sharp, and D.E. Housman, Exon amplification: A strategy to isolate mammalian genes based on RNA splicing, Proc. Natl. Acad. Sci. USA 88:4005 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    D.B. Krizman and S.M. Berget, 3’-Terminal exon trapping: Identification of genes from vertebrate DNA, Focus 15:106.Google Scholar
  5. 5.
    P. Elvin, G. Slynn, D. Black, A. Graham, R. Butler, J. Riley, R. Anand and A.F. Markham, Isolation of cDNA clones using yeast artificial chromosome probes, Nucl. Acids Res. 18:3913 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Lovett, J. Kere and L.M. Hinton, Direct selection: A method for the isolation of cDNAs encoded by large genomic regions, Proc. Natl. Acad. Sci. USA 88:9628 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Parimoo, S.R. Patanjali, H. Shulda, D.D. Chaplin, and S.M. Weissman, cDNA selection: Efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments, Proc. Natl. Acad. Sci. USA 88:9623 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    J.G. Morgan, G.M. Dolganov, S.E. Robbins, L.M. Hinton, and M. Lovett, The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes, Nud. Acids Res. 20:5173 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    B. Korn, Z. Sedlacek, A. Manca, P. Kioschis, D. Konecki, H. Lehrach, and A. Poustka, A strategy for the selection of transcribed sequences in the Xq28 region, Hum. Mol. Genet. 1:235 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    D.A. Tagle, M. Swaroop, M. Lovett, and F.S. Collins, Magnetic bead capture of expressed sequences within large genomic segments, Nature 161:751 (1993).CrossRefGoogle Scholar
  11. 11.
    D.A. Tagle, M. Swaroop, L. Elmer, J. Valdes, K. Blanchard-McQuate, M. Allard, G. Bates, S. Baxendale, R. Snell, M. MacDonald, J. Gusella, H. Lehrach, and F.S. Collins, Magnetic bead capture of cDNAs: A strategy for isolating expressed sequences encoded within large genomic segments, in “Magnetic Separation in Molecular and Cellular Biology”, M. Uhlen, O. Olsvik, and J. Elingboe, ed., Eaton Publishing Co., In Press.Google Scholar
  12. 12.
    T. Maniatis, E.F. Fritsch, and J. Sambrook, “Molecular Cloning: A Laboratory Manual”, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1982).Google Scholar
  13. 13.
    A.P. Feinberg, and B. Vogelstein, A technique for radiolabelling DNA restriction endonucleasefragments to high specific activity, Anal. Biochem. 132:6 (1984).CrossRefGoogle Scholar
  14. 14.
    S. Altschul, W. Gish, W. Miller, E. Myers, and D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215:403 (1990).PubMedGoogle Scholar
  15. 15.
    R.J. MacDonald, G.H. Smith, A.E. Przybyla, and J.M. Chirgwin, Isolation of RNA using guanidinium salts, Meth. EnzymoL 152:219 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Orita, Y. Suziki, T. Sekiya, and K. Hayashi, Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction, Genomics 5(4):874 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Simard, J. Feunteun, G. Lenoir, P. Tonin, T. Normand, V. Luu The, A. Vivier, D. Lasko, K. Morgan, G.A. Rouleau, H. Lynch, F. Labrie, and S.A. Narod, Genetic mapping of the breast-ovarian cancer syndrome to a small interval on chromosome 17q12–21: exclusion of candidate genes EDH17B2 and RARA, Hum. Mol. Genet. 2:1193 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Zheng, M.K. Jung, and B.R. Oakley,γ-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome, Cell 65:817 (1991).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Fergus J. Couch
    • 1
  • Barbara L. Weber
    • 1
  • Francis S. Collins
    • 1
    • 2
    • 3
  • Danilo A. Tagle
    • 3
  1. 1.Departments of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Departments of Human GeneticsUniversity of Michigan Medical SchoolAnn ArborUSA
  3. 3.Laboratory of Gene Transfer, National Center for Human Genome ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations