Skip to main content

Towards a Transcriptional Map of Human Chromosome 21

  • Chapter
Identification of Transcribed Sequences

Abstract

Chromosome 21 is the smallest and one of the best mapped of the human chromosomes. It, therefore, represents a good model system for transcriptional mapping efforts. To construct a comprehensive transcriptional map, the technique of cDNA hybrid selection is being applied to a minimal contig of YAC clones spanning the long arm. Presented here are preliminary results for four YACs representing ≈2 Mb of non-overlapping DNA. While the cDNA hybrid selection approach is rapid and robust, several difficulties remain to be solved in actual map construction. Some of these are associated with YAC chimerism questions, pseudogenes and members of gene families; others involve verification of exonic material and rapid generation of a non-redundant gene set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Gardiner, M. Horisberger, J. Kraus, U. Tantravahi, J. Korenberg, V. Rao, S. Reddy, and D. Patterson, Analysis of human chromosome 21: correlation of physical and cytogenetic maps; gene and CpG island distributions, EMBO J. 9:25 (1990).

    PubMed  CAS  Google Scholar 

  2. H. Ichikawa, F. Hosoda, Y. Arai, K. Shimizu, M. Ohira, and M. Ohki, A complete NOTI restriction map of the entire long arm of human chromosome 21, Nature Genetics 4:361 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. M.J. Owen, L.A. James, J.A. Hardy, R. Williamson, and A.M. Goate, Physical mapping around the Alzheimer disease locus on the proximal long arm of chromosome 21, Am. J. Hum. Genet. 46:316 (1990).

    PubMed  CAS  Google Scholar 

  4. M. Burmeister, S. Kim, E.R. Price, T. de Lange, U. Tantravahi, R.M. Myers, and D.R. Cox, A map of the distal region of the long arm of human chromosome 21 constructed by radiation hybrid mapping and pulsed-field gel electrophoresis, Genomics 9:19 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. D.R. Cox, M. Burmeister, E.R. Price, S. Kim, and R.M. Meyer, Radiation hybrid mapping: A somatic cell genetic method for constructuring high-resolution maps of mammalian chromosomes, Science 250:245 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. F. Tassone, S. Cheng, and K. Gardiner, Analysis of chromosome 21 Yeast Artificial Chromosome (YAC) clones, Am. J. Hum. Genet. 51:1251 (1992).

    PubMed  CAS  Google Scholar 

  7. K. Gardiner, Physical mapping of the long arm of chromosome 21, in: “Molecular Genetics of Chromosome 21 and Down Syndrome,” D. Patterson and C.J. Epstein eds., Wiley-Liss, Inc., New York (1990).

    Google Scholar 

  8. K. Gardiner, B. Aissani, and G. Bernardi, A compositional map of human chromosome 21, EMBO J. 9:1853 (1990).

    PubMed  CAS  Google Scholar 

  9. S. Parimoo, S.R. Patanjhali, G. Shukla, D.D. Chaplin, and S.M. Weissman, cDNA selections: Efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments, Proc. Natl. Acad. Sci. USA. 88:9623 (1991).

    Article  PubMed  CAS  Google Scholar 

  10. D. Patterson, Report of the Second International Workshop on Human Chromosome 21, Cytogenet. Cell. Genet. 57:167 (1991).

    Article  Google Scholar 

  11. I. Chumakov, P. Rigault, S. Guillou, P. Ougen, A. Billaut, G. Guasconi, P. Gervy, I. LeGall, P. Soularue, L. Grinas, L. Bougueleret, C. Bellanne-Chantelot, B. Lacroix, E. Barillot, P. Gesnouin, S. Pook, G. Vaysseix, G. Frelat, A. Shmitz, J.-L. Sambucy, A. Bosch, X. Estivill, J. Weissenbach, A. Vignal, H. Riethman, D. Cox, D. Patterson, K. Gardiner, M. Hattori, Y. Sakaki, H. Ichikawa, M. Ohki, D. Le Pastier, R. Hellig, S. Antonarakis, and D. Cohen, A continuum of overlapping clones spanning the entire human chromosome 21q, Nature 359:380 (1992).

    Article  PubMed  CAS  Google Scholar 

  12. S. Graw, D. Patterson, and K. Gardiner, Chromosome 21 YAC contigs, Am. J. Hum. Genet. 53:1297 (1993).

    Google Scholar 

  13. B. Chomzynski and N. Sacchi, Rapid RNA isolation, Anal. Biochem. 162:156 (1987).

    Article  Google Scholar 

  14. J.G. Morgan, G.M. Dolganov, S.E. Robbins, L.M. Hinton, and M. Lovett, The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes, Nud Acids Res. 20:5173 (1992).

    Article  CAS  Google Scholar 

  15. S.R. Patanjali, S. Parimoo, and S.M. Weissman, Construction of a uniform-abundance (normalized) cDNA library, Proc. Natl. Acad. Sci. USA 88:1943 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. B. Korn, Z. Sedlacek, A. Manca, P. Kioschis, D. Konecki, H. Lehrach, and A. Poustka, A strategy for the selection of transcribed sequences in the Xq28 region, Hum. Molec. Genet. 1:235 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. K. Chowdhury, G. Dressler, G. Breier, U. Deutsch, and P. Gruss, The primary structure of the murine multifinger gene mKr2 and its specific expression in developing and adult neurons, EMBO J. 7:1345 (1988).

    PubMed  CAS  Google Scholar 

  18. M. Aubry, C. Marineau, F.R. Zhang, L. Zahed, D. Figlewicz, O. DeLattre, G. Thomas, P.J. DeJong, J.P. Julien, and G.A. Rouleau, Cloning of six new genes with zinc finger motifs mapping to short and long arms of human acrocentric chromosome 22 (p and q11.2), Genomics 13:641 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. A. Feinberg and B. Vogelstein, Addendum to “A technique for radiolabelling DNA to high specific activity,” Anal. Biochem. 137:266 (1984).

    Article  PubMed  CAS  Google Scholar 

  20. E.C. Uberbacher and R.J. Mural, Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach, Proc. Natl. Acad. Sci. USA. 88:11261 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. W. Gish and D.J. Status, Identification of protein coding regions by database similarity search, Nature Genetics 3:266 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. P.E. Nisson, A. Rashtchian, and P.C. Watkins, Rapid and efficient cloning of Alu-PCR products using uracil DNA glycosylase, in: “PCR Methods and Applications,” Cold Spring Harbor Laboratory Press (1991).

    Google Scholar 

  23. D. Mouchiroud, G. D’Onofrio, B. Aissani, G. Macaya, C. Gautier, and G. Bernardi, The distribution of genes in the human genome, Gene 100:181 (1991).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gardiner, K. et al. (1994). Towards a Transcriptional Map of Human Chromosome 21. In: Hochgeschwender, U., Gardiner, K. (eds) Identification of Transcribed Sequences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2562-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2562-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6094-0

  • Online ISBN: 978-1-4615-2562-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics