Skip to main content

Isolation of Gene Sequences from the BRCA1 Region of Chromosome 17q21 by Exon Amplification

  • Chapter
  • 45 Accesses

Abstract

A variety of techniques now exist for the identification and isolation of gene sequences from cloned genomic DNA. We report the use of exon amplification to isolate candidate exons of genes in the chromosome 17q21 region associated with familial breast and ovarian cancer. We have used the second generation splicing vector pSPL3, which provides greater flexibility for cloning genomic fragments and which reduces the frequency of the major classes of false positive clones. In two experiments, exon amplification was performed using DNAs of approximately 170 cosmids spanning 1–2 Mb of this region. Cosmid DNAs were pooled in groups of 6–10 each. More than 2000 candidate exon clones from these experiments have been arrayed in microtiter dishes. The average size determined for nearly 400 cloned inserts was approximately 200 base pairs. Ongoing efforts to identify and eliminate clone redundancy have thus far yielded more than 100 unique exon clones. Less than 10% of the clones were found to be repetitive or to be artifacts resulting from cryptic splicing involving sequences present in the splicing vector. Thus the great majority of clones were found to be single copy and to derive from the correct chromosomal location. These exons have been used as hybridization probes to isolate cDNA clones derived from normal breast tissue. The cloned exons and corresponding cDNAs are being localized within developing cosmid contigs in order to assemble a transcription map of the region, and to position transcribed sequences with respect to critical recombinants in breast/ovarian cancer families. While database searches suggest that many of the exon sequences are unique, these searches have also identified several genes which were either mapped previously to proximal 17q or which appear to be homologs of genes in other species. Exon amplification represents a rapid and efficient means for isolating candidate gene sequences from genomic clones, facilitating efforts to identify specific genes associated with disease using positional cloning strategies. Utilization of this technique to survey large genomic regions will also assist in efforts to construct transcription maps of chromosomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Elvin, G. Slynn, D. Black, A. Graham, R. Butler, J. Riley, R. Anand, and A.F. Markham, Isolation of cDNA clones using yeast artificial chromosome probes, Nucl. Acids Res. 18:3913 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. S. Parimoo, S.R. Patanjali, H. Shukla, D.D. Chaplin, and S.M. Weissman, cDNA selection: efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments, Proc. Natl. Acad. Sci. 88:9623 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. M. Lovett, J. Kere, and L.M. Hinton, Direct selection: a method for the isolation of cDNAs encoded by large genomic regions, Proc. Natl. Acad. Sci. 88:9628 (1991).

    Article  PubMed  CAS  Google Scholar 

  4. A.J. Buckler, D.D. Chang, S.L. Graw, J.D. Brook, D.A. Haber, P.A. Sharp, and D.E. Housman Exon amplification: A strategy to isolate mammalian genes based on RNA splicing, Proc. Natl. Acad. Sci. 88:4005 (1991).

    Article  PubMed  CAS  Google Scholar 

  5. D.A. Tagle, M. Swaroop, M. Lovett, and F.S. Collins, Magetic bead capture of expressed sequences encoded within large genomic segments, Nature 361:751 (1993).

    Article  PubMed  CAS  Google Scholar 

  6. M.R. Wallace, D.A. Marchuk, L.B. Andersen, R. Letcher, H.M. Odeh, A.M. Saulino, J.W. Fountain, A. Brereton, J. Nicholson, A.L. Mitchell, B.H. Brownstein, and F.S. Collins, Type I neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients, Science 249:181 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. J. Buxton, P. Shelbourne, J. Davies, C. Jones, T. Van Tongeren, C. Aslanidis, P. de Jong, G. Jansen, M. Anvret, B. Riley, R. Williamson, and K. Johnson, Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy, Nature 355:547 (1992).

    Article  PubMed  CAS  Google Scholar 

  8. The Huntington’s Disease Collaborative Research Group, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell 72:971 (1993).

    Article  Google Scholar 

  9. Z. Sedlacek, B. Korn, D.S. Konecki, R. Siebenhaar, J.F. Coy, P. Kioschis, and A. Poustka, Construction of a transcription map of a 300 Kb region around the human G6PD locus by direct cDNA selection, Hum. Molec. Genet. 2:1165 (1993).

    Google Scholar 

  10. J.M. Rommens, B. Lin, G.B. Hutchinson, S.E. Andrew, Y.P. Goldberg, M.L. Glaves, R. Graham, V. Lai, J. McArthur, J. Nasir, J. Theilmann, H. McDonald, M. Kalchman, L.A. Clarke, K. Schappert, and M.R. Hayden, A transcription map of the region containing the Huntington disease gene, Hum. Molec. Genet. 2:901 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. W.-F. Fan, X. Wei, H. Shulda, S. Parimoo, H. Xu, P. Sankhavaram, Z. Li, and S.M. Weissman, Application of cDNA selection techniques to regions of the human MHC, Genomics 17:575 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. G.M. Duyk, S. Kim, R.M. Myers, and D.R. Cox, Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA, Proc. Natl. Acad. Sci. 87:8995 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. D. Auch and M. Reth, Exon trap cloning: using PCR to rapidly detect and clone exons from genomic DNA fragments, Nucl. Acids Res. 18:6743 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. M. Hamaguchi, H. Sakamoto, H. Tsuruta, H. Sasaki, M. Tetsuichiro, T. Sugimura, and M. Terada, Estabishment of a highly sensitive and specific exon-trapping system, Proc. Natl. Acad. Sci. 89:9779 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. D.B. Krizman and S.M. Berget, 3’-terminal exon trapping: identification of genes from vertebrate DNA, LifeTechnol. Focus 15:106 (1993).

    Google Scholar 

  16. P.E. Nisson and P.C. Watkins, The 3’ exon trapping system, LifeTechnol. Focus 15:108 (1993).

    Google Scholar 

  17. M.P. Duyao, S.A. Taylor, A.J. Buckler, C.M. Ambrose, C. Lin, N. Groot, D. Church, G. Barnes, J.J. Wasmuth, D.E. Housman, M.E. MacDonald, and J.F. Gusella, A gene from 4p16.3 with similarity to a superfamily of transporter proteins, Hum. Molec. Genet. 2:673 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. M.A. North, P. Sanseau, A.J. Buckler, D. Church, A. Jackson, K. Patel, J. Trowsdale, and H. Lehrach, Efficiency and specificity of gene isolation by exon amplification, Mammal. Genome 4:466 (1993).

    Article  CAS  Google Scholar 

  19. D.M. Church, L.T. Banks, A.C. Rogers, S.L. Graw, D.E. Housman, J.F. Gusella, and A.J. Buckler, Identification of human chromosome 9 specific genes using exon amplification, Hum. Molec. Genet. 2:1915 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. J.B.J. Kwok, E. Gardner, J.P. Warner, B.A.J. Ponder, and L.M. Mulligan, Structural analysis of the human Ret proto-oncogene using exon trapping, Oncogene 8:2575 (1993).

    PubMed  CAS  Google Scholar 

  21. A. Andreadis, P.E. Nisson, K.S. Kosik, and P.C. Watkins, The exon trapping assay partly discriminates against alternatively spliced exons, Nucl. Acids Res. 21:2217 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. C. Vulpe, B. Levinson, S. Whitney, S. Packman, and J. Gitschier, Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase, Nature Genetics 3:7 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. J.A. Trofatter, M.M. MacCollin, J.L. Rutter, J.R. Murrell, M.P. Duyao, D.M. Parry, R. Eldridge, N. Kley, A.G. Menon, K. Pulaski, V. Haase, C. Ambrose, D. Munroe, C. Bove, J.L. Haines, R.L. Martuza, M.E. MacDonald, B.R. Seizinger, M.P. Short, A.J. Buckler, and J.F. Gusella, A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor, Cell 72:791 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. D.M. Church, C.J. Stotler, J.L. Rutter, J.R. Murrell, J.A. Trofatter, and A.J. Buckler, Isolation of genes from complex sources of mammalian genomic DNA using exon amplification, Nature Genetics 6:98 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. J. M. Hall, M. K. Lee, J. Morrow, B. Newman, L. Anderson, B. Huey, and M.-C. King, Linkage of early-onset familial breast cancer to chromosome 17q21, Science 250:1684 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. D.F. Easton, D.T. Bishop, D. Ford, G.P. Crockford, and the Breast Cancer Linkage Consortium, Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families, Am. J. Hum. Genet. 52:678 (1993).

    PubMed  CAS  Google Scholar 

  27. S.A. Smith, D.F. Easton, D.G.R. Evans, and B.A.J. Ponder, Allele losses in the region 17q12–21 in familial breast and ovarian cancer involve the wild-type chromosome, Nature Genetics 2:128 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. D.P. Kelsell, D.M. Black, D.T. Bishop, and N.K. Spurr, Genetic analysis of the BRCA1 region in a large breast/ovarian family: refinement of the minimal region containing BRCA1, Hum. Molec. Genet. 2:1823 (1993).

    Article  PubMed  CAS  Google Scholar 

  29. J. Simard, J. Feunteun, G. Lenoir, P. Tonin, T. Normand, V. Luu The, A. Vivier, D. Lasko, K. Morgan, G. Rouleau, H. Lynch, F. Labrie, and S. Narod, Genetic mapping of the breast-ovarian cancer syndrome to a small interval on chromosome 17q12–21: exclusion of candidate genes EDH17B2 and RARA, Hum. Molec. Genet. 2:1993 (1993).

    Google Scholar 

  30. A.P. Feinberg and B. Vogelstein, A technique for radiolabeling DNA restriction fragments to high specific activity, Anal. Biochem. 132:6 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. W.D. Benton and R.W. Davis, Screening Xgt recombinant clones by hybridization to single plaques in situ, Science 196:180 (1977).

    Article  PubMed  CAS  Google Scholar 

  32. A. Swaroop and J. Xu, cDNA libraries from human tissues and cell lines, Cytogenet. Cell Genet. 64:292 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. R.J. Leach, M.J. Thayer, A.J. Schafer, and R.E.K. Fournier, Physical mapping of human chromosome 17 using fragment-containing microcell hybrids, Genomics 5:167 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. P.R. Fain, E. Solomon, and D.H. Ledbetter, Second International Workshop on Human Chromosome 17, Cytogenet. Cell Genet. 57:65 (1991).

    Article  Google Scholar 

  35. W.L. Flejter, M. Watkins, K.J. Abel, S.C. Chandrasekharappa, B.L. Weber, F.S. Collins, and T.W. Glover, Isolation and characterization of somatic cell hybrids with breakpoints spanning 17q22-q24, Cytogenet. Cell Genet. 64:222 (1993).

    Article  PubMed  CAS  Google Scholar 

  36. B.F. Koop, M.M. Miyamoto, J.E. Embury, M. Goodman, J. Czelusniak, and J.L. Slightom, Nucleotide sequence and evolution of the orangutan epsilon globin gene region and surrounding Alu repeats, J. Molec. Evol. 24:94 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215:403 (1990).

    PubMed  CAS  Google Scholar 

  38. W. Gish, D.J. States, Identification of protein coding regions by database similarity search, Nature Genetics 3:266 (1993).

    Article  PubMed  CAS  Google Scholar 

  39. J.M. Valdes, D.A. Tagle, and F.S. Collins, Island rescue PCR: a novel method for isolating transcribed sequences from YACs and cosmids, Proc. Nail. Acad. Sci. (in press).

    Google Scholar 

  40. M. Olson, L. Hood, C. Cantor, and D. Botstein, A common language for physical mapping of the human genome, Science 245:1434 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. K.J. Abel, M. Boehnke, M. Prahalad, P. Ho, W.L. Flejter, M. Watkins, J. VanderStoep, S.C. Chandrasekharappa, F.S. Collins, T.W. Glover, and B.L. Weber, A radiation hybrid map of the BRCA1 region of chromosome 17q12–21, Genomics 17:632 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abel, K.J. et al. (1994). Isolation of Gene Sequences from the BRCA1 Region of Chromosome 17q21 by Exon Amplification. In: Hochgeschwender, U., Gardiner, K. (eds) Identification of Transcribed Sequences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2562-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2562-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6094-0

  • Online ISBN: 978-1-4615-2562-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics