An Exon Trapping System Providing Size Selection of Spliced Clones and Facilitating Direct Cloning

  • Nicole A. Datson
  • Geoffrey M. Duyk
  • Lau A. J. Blonden
  • Gert-Jan B. Van Ommen
  • Johan T. Den Dunnen


Exon trapping is a method to functionally clone expressed sequences from genomic DNA. We have developed an exon trapping procedure based on the use of vector pETVSD2. Cosmid DNA is partially digested and cloned in pETV-SD2. DNA of an entire library of subclones is introduced into COS-1 cells and transiently expressed. RNA is isolated and vector-derived transcripts are amplified by RT-PCR. Cloning of the RT-PCR products, which contain a ColEI-origin of replication and a supF marker, is established by NotI digestion and intramolecular circularisation. Due to their shorter length, spliced clones are preferentially amplified and cloned.

Using this approach, we have been able to trap several exons from test cosmids of the DMD-gene, including the single 176 by exon 45 present in 40 kb of intronic sequences. We have applied this system in the search for coding sequences in various genomic regions, including the candidate region for the gene involved in facioscapulohumeral muscular dystrophy (FSHD) on 4q35. We have developed a screening procedure which allows more efficient identification of potential exon containing clones, thus discarding the high background of false positives.


Duchenne Muscular Dystrophy Duchenne Muscular Dystrophy Splice Donor Splice Acceptor Yeast Artificial Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.T. Burke, G.R. Carle and M.V. Olson, Cloning of large segments of exogeneous DNA into yeast by means of artificial chromosome vectors, Science 236:806 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Anand, A. Villasante and C. Tyler-Smith, Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis, Nucl. Acids Res. 17:3425 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    J.C. Pierce, B. Sauer and N.L. Sternberg, A positive selection vector for cloning high molecular weight DNA by the bacteriophage P1 system: improved cloning efficiency, Proc. Natl. Acad. Sci. USA 89:2056 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    A.P. Bird, CpG-rich islands and the function of DNA methylation, Nature 321:209 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    A.P. Monaco, R.L. Neve, C. Colletti-Feener, C.J. Bertelson, D.M. Kurnit and L.M. Kunkel, Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene, Nature 323:646 (1986).PubMedCrossRefGoogle Scholar
  6. 6.
    S. Dear and R. Staden, A sequence assembly and editing program for efficient management of large projects, Nucl. Acids Res.19:3907 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    E.C. Uberbacher and R.J. Mural, Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach, Proc. Natl. Acad. Sci. USA 88:11261 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    P. Elvin, G. Slynn, D. Black, A. Graham, R. Butler, J. Riley, R. Anand and A.F. Markham, Isolation of cDNA clones using yeast artificial chromosome probes, Nucl. Acids Res. 18:3913 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Parimoo, S.R. Pantanjali, H. Shukla, D.D. Chaplin, and S.M. Weissman, cDNA selection: efficient PCR approach for the selection of cDNAs encoded in large chromosomal DNA fragments, Proc. Natl. Acad. Sci. USA 88:9623 (1991).PubMedCrossRefGoogle Scholar
  10. 10.
    J.G. Morgan, G.M. Dolganov, S.E. Robbins, L.M. Hinton and M. Lovett, The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes, Nucl. Acids Res. 20:5173 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    G.M. Duyk, S. Kim, R.M. Myers and D.R. Cox, Exon trapping: A genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA, Proc. Natl. Acad. Sci. USA 87:8995 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    A.J. Buckler, D.D. Chang, S.L. Graw, J.D. Brook, D.A. Haber, P.A. Sharp and D.E. Housman, Exon amplification: a strategy to isolate mammalian gene based on RNA splicing, Proc. Natl. Acad. Sci. USA 88:4005 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    D. Auch and M. Reth, Exon trap cloning: using PCR to rapidly detect and clone exons from genomic DNA fragments, Nucl. Acids Res. 18:6743 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Hamaguchi, H. Sakamoto, H. Tsuruta, H. Sasaki, T. Muto, T. Sugimura and M. Terada, Establishment of a highly sensitive and specific exon-trapping system, Proc. Natl. Acad. Sci. USA 89:9779 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    The Huntington’s Disease Collaborative Research Group, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s Disease chromosomes, Cell 72:971 (1993).CrossRefGoogle Scholar
  16. 16.
    J.A. Trofatter, M.M. MacCollin, J.L. Rutter, J.R. Murrell, M.P. Duyao, D.M. Parry, R. Eldridge, N. Kley, A.G. Menon, K. Pulaski, V.H. Haase, C.M. Ambrose, D. Munroe, C. Bove, J.L. Haines, R.L. Martuza, M.E. MacDonald, B.R. Seizinger, M.P. Short, A.J. Buckler and J.F. Gusella, A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor, Cell 72:791 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    A.P. Walker, F. Muscatelli and A.P. Monaco, Isolation of the human Xp21 glycerol kinase gene by positional cloning, Hum. Mol. Genet. 2:107 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    S.A.M. Taylor, R.G. Snell, A. Buckler, D. Church, C.S. Lin, M. Aither, N. Groot, G. Barnes, D.J. Shaw, J.J. Wasmuth, P.S. Harper, D.E. Housman, M.E. MacDonald and J.F. Gusella, Nature Genetics 2:223 (1993).CrossRefGoogle Scholar
  19. 19.
    B. Seed, Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo, Nucl. Acids Res. 11:2427 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Koenig, E.P. Hoffman, C.J. Bertelson, A.P. Monaco, C.A. Feener and L.M. Kunkel, Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals, Cell 50:509 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    L.A.J. Blonden, J.T. Den Dunnen, H.M.B. Van Paassen, M.C. Wapenaar, P.M. Grootscholten, H.B. Ginjaar, E. Bakker, P.L. Pearson and G.J.B. Van Ommen, High resolution deletion breakpoint mapping in the DMD-gene by whole cosmid hybridization, Nucl. Acids Res. 17:5611 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    R.G. Roberts, A.J. Coffey, M. Bobrow and D.R. Bentley, Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR, Genomics 13:942 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Maniatis, E.F. Fritsch, and J. Sambrook, J, “Molecular Cloning (A Laboratory Manual)”, New York, Cold Spring Harbor Laboratory, 1982.Google Scholar
  24. 24.
    R.G. Roberts, D.R. Bentley, T.F.M. Barby, E. Manners and M. Bobrow, Direct diagnosis of carriers of Duchenne and Becker muscular dystrophy by amplification of lymphocyte RNA, Lancet 336:1523 (1990).PubMedCrossRefGoogle Scholar
  25. 25.
    C.A. Feener, M. Koenig and L.M. Kunkel, Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus, Nature:338:509 (1989).PubMedCrossRefGoogle Scholar
  26. 26.
    L.A.J. Blonden, P.M. Grootscholten, J.T. Den Dunnen, E. Bakker, S. Abbs, M. Bobrow, C. Boehm, C. Van Broeckhoven, L. Baumbach, J. Chamberlain, C.T. Caskey, M. Denton, L. Felicetti, G. Galluzzi, K.H. Fischbeck, U. Francke, B. Darras, H. Gilgenkrantz, J.-C. Kaplan, F.H. Herrmann, C. Junien, C. Boileau, S. Liechti-Gallati, M. Lindlof, T. Matsumoto, N. Niikawa, C. Muller, J.E. Poncin, S. Malcolm, E. Robertson, G. Romeo, A.E. Covone, H. Scheffer, E. Schroder, M. Schwartz, C. Verellen, A. Walker, R. Worton, E. Gillard and G.J.B. Van Ommen, 242 breakpoints in the 200-kb deletion-prone P20 region of the DMD-gene are widely spread, Genomics 10:631 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    C. Wijmenga, J.E. Hewitt, L.A. Sandkuijl, L.N. Clark, T.J. Wright, J.G. Dauwerse, A.M. Gruter, M.H. Hofker, P. Moerer, R. Williamson, G.J.B. Van Ommen, G.W. Padberg and R.R. Frants, Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy, Nature Genetics 2:26 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    J.C.T. van Deutekom, C. Wijmenga, E.A.E. van Tienhoven, A-M. Gruter, J.E. Hewitt, G.W. Padberg, G.J.B. Van Ommen, M.H. Hofker and R.R. Frants, FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit, Hum. Mol. Genet. (1993).Google Scholar
  29. 29.
    M.A. Frohman, M.K. Dush and G.R. Martin, Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer, Proc. Natl. Acad. Sci. USA 85:8998 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    D.B. Krizman and S.M. Berget, 3’-terminal exon trapping, in:“Genome Mapping and Sequencing,” Cold Spring Harbor Press, NY, USA:p202 (1993).(Abstract)Google Scholar
  31. 31.
    L. Zhang, X. Cui, K. Schmitt, R. Hubert, W. Navidi and N. Arnheim, Whole genome amplification from a single cell: implications for genetic analysis, Proc. Natl. Acad. Sci. USA 89:5847 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Andreadis, P.E. Nisson, K.S. Kosik and P.C. Watkins, The exon trapping assay partly discriminates against alternatively spliced exons, Nucl. Acids Res. 21:2217 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Nicole A. Datson
    • 1
  • Geoffrey M. Duyk
    • 2
  • Lau A. J. Blonden
    • 1
  • Gert-Jan B. Van Ommen
    • 1
  • Johan T. Den Dunnen
    • 1
  1. 1.Department of Human Genetics, Medical Genetics Centre South-West NetherlandsLeiden UniversityAL LeidenThe Netherlands
  2. 2.Department of Genetics, Howard Hughes Medical InstituteHarvard Medical SchoolBostonUSA

Personalised recommendations