The Space of Local Hidden Variables Cannot Be a Metric one and What Next

  • Milan Vinduška


Metric content of the Bell inequalities for the wide range of phenomena can be interpreted as a consequence of the isotropy of the hidden variable space defined by measuring devices.


Quantum Correlation Bell Inequality Affine Geometry Hide Vector Local Hide Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Tyapkin and M. Vinduška: Found Phys.21, 185 (1991).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    J.S. Bell: Physics 1, 195 (1964).Google Scholar
  3. 3.
    M. Vinduška: Bell’s scheme of LHV and time-dependent quantum phenomena, Proc. Irani Conf. (1992), (in press).Google Scholar
  4. 4.
    M. Vinduška: Phys.Lett.A 174, 9 (1993).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M. Vinduška: Metric Bell inequalities,relative measure of probability and the geometry of hidden variable space, Proc.Third Winter School on Measure Theory, Liptovský Ján (1993), Tatra Mountains Math.Publ., (in press).Google Scholar
  6. 6.
    J. von Neumann: The Mathematical Foundations of Quantum Mechanics,Princeton, N.J., (1955).Google Scholar
  7. 7.
    D.M. Greenberger, MAHorne and A.Zeilinger,in: Bell’s Theorem, Quantum Theory, and Conception of Universe, Dordrecht (1989).Google Scholar
  8. 8.
    R.P. Feynman: In J. Theor.Phys. 21, 467 (1982).MathSciNetCrossRefGoogle Scholar
  9. 9.
    J.S. Bell: (Private communication).Google Scholar
  10. 10.
    J.A. Smorodinsky: (private communication).Google Scholar
  11. 11.
    The anonymous referee of citation1.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Milan Vinduška
    • 1
  1. 1.ISC-EngineeringPrague 6Czech Republic

Personalised recommendations