Rabi Oscillations Described By de Broglian Probabilities

  • Mirjana Božić
  • Dušan Arsenović


Superposition principle, as one of the basic principles in quantum mechanics, is essential for numerous quantum phenomena: interference, quantum beats, quantum interference, wave packets, fluorescence, Rabi oscillations, spin echo, superposition of spin states etc. In all those cases a wave function of a quanton is a superposition of two or more eigenstates. Characteristic features of those phenomena are determined by relative phases of different components in the above superposition. But, the standard interpretation of quantum mechanics avoids to attribute physical meaning to phases as well as to relative phases of wave functions. As a consequence, attempts to physically explain and understand those phenomena often encounter paradoxes, difficulties and inconsistencies discussed for example by Feynman1 and Ballentine2 in the case of interference, by Klein et al.3 and Kaiser et al.4 in connection with wave packets, by Wigner5 in connection with spin state superposition, by Schrödinger6 and Brewer and Schenzle7 in relation to fluorescence, etc.


Wave Function Wave Packet Quantum Interference Rabi Frequency Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.P. Feynman, R.B. Leighton and M. Sands, “The Feynman Lectures on Physics,” Addison Wesley, Reading (1964)Google Scholar
  2. 2.
    L.E. Ballentine, Am. J. Phys. 54:883 (1986)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A.G. Klein, G.I. Opat and W.A. Hamilton, Phys. Rev. Lett. 50:563 (1983)ADSCrossRefGoogle Scholar
  4. 4.
    H. Kaiser, R. Clothier, S.A. Werner, H. Rauch and H. Wolwitsch, Phys. Rev. A45:31 (1992)ADSGoogle Scholar
  5. 5.
    E.P. Wigner, Am. J. Phys. 31:6(1963)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    E. Schrödinger, The British Journal for the Philosophy of Science 3:109 (1952)CrossRefGoogle Scholar
  7. 7.
    R.G. Brewer and A. Schenzle, Proc. 2nd Int. Symp. Foundations of Quantum Mechanics,Tokyo, 257 (1986)Google Scholar
  8. 8.
    L. de Broglie, “Etude Critiques des Bases de l’lnterpretation Actuelle de la Mecanique Ondula-toire,” Gauthier-Villars, Paris(1963)Google Scholar
  9. 9.
    E. Schrödinger, Fndeavour. 9:109 (1950)Google Scholar
  10. 10.
    J.P. Vigier, Physica B151:386 (1988)Google Scholar
  11. 11.
    F. Selleri, “Quantum Paradoxes and Physical Reality,” Kluwer, Dordrecht (1990)CrossRefGoogle Scholar
  12. 12.
    M. Božić and Z. Marić, Phys. Lett. A158:33 (1991)ADSGoogle Scholar
  13. 13.
    M. Božić, Z. Marić and J.P. Vigier, Found. Phys. 22:1325 (1992)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    M. Božić, Compatible statistical interpretation of interference in double-slit interferometer, in: “Waves and Particles in Light and Matter,” A. van der Merwe and A. Garuccio, eds., Plenum, New York (1994)Google Scholar
  15. 15.
    M. Božić and Z. Marić, Probability and interference, to be published in Courants, amers etécueils en microphysique, G. Lochac, edGoogle Scholar
  16. 16.
    M. Božić and Z. Marić, to be published in Found. Phys. Google Scholar
  17. 17.
    P.L. Knight and P.W. Milonni, Phys. Reports 66:21 (1980).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    L. Allen and J.H. Eberly, “Optical Resonance and Two-level Atoms,” Dover, New York (1987)Google Scholar
  19. 19.
    Th. Sauter, R. Blatt, W. Neuhauser and R.E. Toschak, Physica Scripta T22:128 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    F. Selleri and G. Tarozzi, Il Nuovo Cimento 43B:31 (1978)MathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Mirjana Božić
    • 1
  • Dušan Arsenović
    • 1
  1. 1.Institute of PhysicsBeogradYugoslavia

Personalised recommendations