Advertisement

Interbasis “Sphere—Cylinder” Expansions for the Oscillator in the Three—Dimensional Space of Constant Positive Curvature

  • G. S. Pogosyan
  • A. N. Sissakian
  • S. I. Vinitsky

Abstract

In recent years, systems with accidental degeneracy in spaces of constant curvature have been in the focus of attention of many researches due to their nontrivial symmetry.

Keywords

Constant Curvature Jacobi Polynomial Schrodinger Equation Kepler Problem Quadratic Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Schrödinger. Proc.Irish.Acad. A. 45:9 (1940).Google Scholar
  2. [2]
    L. Infeld, A. Schild, A note on the Kepler problem in a space of constant negative curvature, Phys.Rev. 67:121 (1945).MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    P.W. Higgs, Dynamical symmetries in a spherical geometry I, J.Phys A, 12:309 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    H.I. Leemon, Dynamical symmetries in a spherical geometry I, J.Phys A. 12:489 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    Yu.A. Kurochkin, V.S. Otchik, Analogue of the Runge–Lenz vector and energy spectrum in the Kepler problem on the three-dimensional sphere, Vesti Akad. Nauk BSSR 3:56 (1983).Google Scholar
  6. [6]
    Ya.A. Granovsky, A.S. Zedanov, and I.M. Luzenko, Quadratic algebras and dynamics into the curvature space I. Oscillator, Teor. Math. Phys. 91:207 (1992).Google Scholar
  7. [7]
    Ya.A. Granovsky. A.S. Zedanov, and I.M. Luzenko, Quadratic algebras and dynamics into the curvature space I. The Kepler problem, Teor. Math. Phys. 91:397 (1992).Google Scholar
  8. [8]
    J.A. Wilson, Some hypergeometric orthogonal polynomials, SIAM J. Math. Anal. 11:690 (1980).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    M.N. Olevskii, Triorthogonal systems in space of constant curvature in which the equation Δ2 u + λu = 0 allows the complete separation of variables, Math. Sb. 27:379 (1950) (in russian).MathSciNetGoogle Scholar
  10. [10]
    S. Flügge, “Problems in Quantum Mechanics”, V.l Springer-Verlag, Berlin-Heidelberg-New York, (1971).Google Scholar
  11. [11]
    G. Szegö, “Ortogonal Polynomials”, Publisher by the American Mathematical, Society, New York, (1959).Google Scholar
  12. [12]
    G. Bateman, A. Erdelyi. “Higher Transcedental Functions”, MC Graw-Hill Book Company, INC. New York-Toronto-London, (1953).Google Scholar
  13. [13]
    W.N. Bailey. “Generalized hypergeometric series”. Cambridge Tracts, No 32, Cambridge 1935.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • G. S. Pogosyan
    • 1
  • A. N. Sissakian
    • 1
  • S. I. Vinitsky
    • 1
  1. 1.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaMoscow regionRussia

Personalised recommendations