Advertisement

Earth Complexity vs. Plate Tectonic Simplicity

  • Giancarlo Scalera

Abstract

A strong impulse to the geosciences was due to the journey of Christopher Columbus and to the subsequent work of contemporary cartographers in mapping the new continents. The similarity of the Atlantic coastline shapes of South America and Africa become immediately evident, transporting the 16th century thought towards new “continents” of ideas and awarenesses. From the sometimes different and attenuated fiat Earth dogmas (Randies, 1980) defended by the church in the age of Columbus, three centuries were needed to slowly develop the links with other fields which prompted the French naturalist Buffon to affirm that:

They (elephants, rhinoceroses, hippopotamuses) lived contemporaneusly in the northern region of Europe, Asia and America; a fact revealing that the two continents were once contiguous and that they separated in later epochs. (.....) Maybe the separation of Europe from America happened 10000 years ago.

Keywords

Fracture Zone Magnetic Anomaly Plate Tectonic Pacific Plate Ocean Floor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AA.VV. versus Newton C.R., 1988, Paleobiogeography of the ancient Pacific, Science 249:680–683.Google Scholar
  2. Ager, D.V., 1986, Migrating fossils, moving plates and an expanding Earth, Modern Geology 10: 377–390.Google Scholar
  3. Ahmad, F., 1983, Late Palaeozoic to Early Mesozoic palaeogeography of the Tethys region, in:“Expanding Earth Symposium,” S.W. Carey, ed., University of Tasmania, Sydney 1981, 131–145.Google Scholar
  4. Arason, P. and Levi, S., 1990, Compaction and inclination shallowing in deep-sea sediments from the Pacific Ocean, Journ.Geoph.Res. 95:4501–4510.ADSCrossRefGoogle Scholar
  5. Astibia, H., Buffetaut, E. et al., 1990, The fossil vertebrates from Laño (Basque Country, Spain); new evidenceon the composition and affinities of the Late Cretaceous continental faunas of Europe, Terra Nova 2: 460-466.Google Scholar
  6. Borgia, A., Ferrari, L., and Pasquarè, G., 1992, Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna, Nature 357:231–235.ADSCrossRefGoogle Scholar
  7. Borgia, A., and Treves, B., 1992, Volcanic plates overriding the ocean crust: structure and dynamics of Hawaiian volcanoes, in: “ Ophiolites and their Modern Oceanic Analogues,” L.M. Parson, B J. Murton and P. Browning, eds., Geol.Soc.Spec.Publ. n° 60:277–299.Google Scholar
  8. Buffetaut, E. 1989a, The contribution of vertebrate palaeontology to the geodynamic history of South East Asia, in: “Tectonic Evolution of the Tethyan Region,” A.M.C. Sengor, ed., Kluver Academic Publishers, 645–653.Google Scholar
  9. Buffetaut, E., 1989b, Archosaurian reptiles with Gondwanan affinities in the Upper Cretaceous of Europe, Terra Nova 1:69–73.CrossRefGoogle Scholar
  10. Buffetaut, E., Sattayarak, N. and Suteethorn, V., 1989, A psittacosaurid dinosaur from the Cretaceous of Thailand and its implications for the palaeogeographical history of Asia, Terra Nova 1:370–373.CrossRefGoogle Scholar
  11. Buffon, G. 1780, “Les Èpoques de la Nature,” quoted in: “La macchina della Terra,” N. Morello,Loescher, Torino, pp. 231.Google Scholar
  12. Bullard, E.C., Everett, J.E. and Smith, A.G., 1965, Fit of continents around Atlantic, Roy. Soc. London Phil. Trans. ser. A 258:41–75.ADSCrossRefGoogle Scholar
  13. Carey, S.W., 1975, The Expanding Earth-an Essay Review, Earth Science Reviews 11:105–143.ADSCrossRefGoogle Scholar
  14. Carey, S.W., 1976, “The Expanding Earth,” Elsevier, Amsterdam, pp.488.Google Scholar
  15. Chatterjee, S., 1984, The drift of India: a conflict in plate tectonics, Mém. Soc. géol. Franee N.S. n°147:43–48.Google Scholar
  16. Chatterjee, S., 1987, A new theropod dinosaur from India with remarks on the Gondwana-Laurasia connection in the Late Triassic, in: “Gondwana Six: Stratigraphy, Sedimentology, and Paleontology,” G.D. McKenzie, ed, AGUGeophys. Mon. n°41:183–189.Google Scholar
  17. Chatterjee, S. and Hotton, N., 1986, The paleoposition of India, Jou.Southeast Asian Earth Sci. 1:145–189.CrossRefGoogle Scholar
  18. Colbath, G.K., 1990, Palaeobiogeography of Middle Palaeozoic organic-walled phytoplankton, in: “Palaeozoic Palaeogeography and Biogeography,” W.S. McKerrow and C.R. Scotese, eds., Geological Society Memoir n.l2:207–213.Google Scholar
  19. Colbert, E.H., 1991, Mesozoic and Cainozoic tetrapod fossils from Antarctica, in: “The Geology of Antarctica,” R J. Tingey, ed., Clarendon Press, Oxford, 568–587.Google Scholar
  20. Davidson, J.K., 1983, Tethys and Pacific stratigraphic evidence for an expanding Earth, in: “Expanding Earth Symposium,” S.W. Carey, ed., University of Tasmania, Sydney 1981, 191–197.Google Scholar
  21. Davidson, J.K., 1994, this volume.Google Scholar
  22. Delaney, P.T., 1992, You can pile it only so high, Nature 357:194–196.ADSCrossRefGoogle Scholar
  23. Dietz, R.S. and Holden, J.C., 1971, Pre-Mesozoic oceanic crust in the eastern Indian Ocean (Wharton basin)? Nature 299, 309–312.ADSCrossRefGoogle Scholar
  24. Florindo, F., Sagnotti, L. and Scalera, G., 1994, Complete automatic management of the ABASE ASCII version of the Global Paleomagnetic Database, EOS (in press).Google Scholar
  25. Grigg, R.W. and Hey, R. 1992, Paleoceanography of the tropical eastern Pacific Ocean, Science 255, 172–178.ADSCrossRefGoogle Scholar
  26. Goujet, D. and Janvier, P., 1984, Devonian vertebrates from South America, Nature 312:311–311.CrossRefGoogle Scholar
  27. Harrison, C.G.A. and Watkins, N.D., 1977, Shallow inclinations of remanent magnetism in Deep-Sea Drilling Project igneous cores: Geomagnetic field behavior or postemplacement effects? Journ.Geoph.Res. 82:4869–4877.ADSCrossRefGoogle Scholar
  28. Haxby, W.F., 1987, “Gravity Field of the World’s Oceans,” map published by the National Geophysical Data Center, NOAA, Boulder.Google Scholar
  29. Hilgenberg, O.C., 1933, “Vom Wachsenden Erdball,” Giessmann & Bartach, Berlin, pp.56.Google Scholar
  30. Hollister, L.S., 1993, The role of melt in the uplift and exumation of orogenic belts, Chemical Geology 108:31–48.CrossRefGoogle Scholar
  31. Hunt, C, Banerjee, S.K. and Marvin, J., 1986, Magnetic exsolution in oceanic basalts lead to CRM controlled by ambient field, not host-rock magnetization (abstract), EOS 67:923.Google Scholar
  32. Jordan, P., 1971, “The Expanding Earth,” Pergamon Press, Oxford, pp.202.Google Scholar
  33. Katz, M.B., 1993, The Kannack complex of the Vietnam Kontum massif of the Indochina block: An exotic fragment of Precambrian Gondwanaland? in: “Gondwana Eight,” R. Findlay et al., eds., Balkema, Rotterdam, 161–164.Google Scholar
  34. Keindl, J., 1940, “Dehnt sich die Erde aus? Eine Geologische Studie,” Herold-Verlag, München, pp.50.Google Scholar
  35. Kosygin, Yu.A. and Maslov, L.A., 1986, The role of solid lunar tides in the tectonic process, Geotectonics 20:451–454.Google Scholar
  36. Larson, R.L., Piunan III, W.C., Golovchenko, X., Cande, S.C., Dewey, J.F., Haxby, W.F., La Brecque, J.L., (map’s compilers) 1985, “The Bedrock Geology of the World,” Freeman & Co.Inc, New YorkGoogle Scholar
  37. Lehmann, R., 1992, Artie push moraines, a case study of the Thompson Glacier moraine, Axel Heiberg Island, N.W.T., Canada, Z. Geomorph. N.F. supp. 86:161–171.Google Scholar
  38. Levi, S. and Banerjee, S., 1990, On the origin of inclination shallowing in redeposited sediments, J.Geoph. Res. 95, 4383–4389.ADSCrossRefGoogle Scholar
  39. Lindemann, B., 1927, “Kettengebirge, Kontinentale Zerspaltung und Erdexpansion,” Verlag von G. Fischer, Jena, pp.186.Google Scholar
  40. Lock, J. and McElhinny, M.W., 1991, The Global Paleomagnetic Database, Surveys in Geophysics 12:317–491.ADSCrossRefGoogle Scholar
  41. Mann, C.J. and Kanagy, S.P., 1990, Angles of repose that exceed modern angles, Geology 18:358–361.ADSCrossRefGoogle Scholar
  42. McElhinny, M.W. and Lock, J., 1990a, Global Paleomagnetic Database Project, Phys. Earth Plan. Int. 63:1–6.ADSCrossRefGoogle Scholar
  43. McElhinny, M.W. and Lock, J., 1990b, IAGA Global Paleomagnetic Database, Geophys. J. Int. 101:763–766.ADSCrossRefGoogle Scholar
  44. Merle, O.R., Davis, G.H., Nickelsen, R.P. and Gourlay, P.A., 1993, Relation of thin-skinned thrusting of Colorado Plateau strata in southwestern Utah to Cenozoic magmatism, Geol.Soc.Amer.Bull. 105:387–398.CrossRefGoogle Scholar
  45. Merle, O.R. and Vendeville, B., 1992, Modélisation analogique de chevauchements induits par des intrusions magmatiques, C. R Acad. ScL Paris 315 ser.II: 1541–1547.Google Scholar
  46. Morgan, W.J., 1968, Rises, trenches, great faults, and crustal blocks, J.Geoph.Res. 73:1959–1982.ADSCrossRefGoogle Scholar
  47. Nakanishi, M., Tamaki, K. and Kobayashi, K., 1992, A new mesozoic isochron chart of the Northwestern Pacific Ocean: paleomagnetic and tectonic implications, Geophys.Res.Lett. 19:693–696.ADSCrossRefGoogle Scholar
  48. Neiman, V.B., 1990, An alternative to Wegener’s mobilism, in: “Critical Aspect of the Plate Tectonics Theory.Vol.II (Alternative Theories),” Beloussov et al, eds., Theophrastus Publications S.A., Athens, 3–18.Google Scholar
  49. Newton, C.R., 1988, Significance of “Tethian” fossils in the American Cordillera, Science 242:385–391.ADSCrossRefGoogle Scholar
  50. Patterson, C. and Owen, H.G., 1991, Indian Isolation or Contact? A response to Briggs, Syst. Zool. 40(1):96–100.CrossRefGoogle Scholar
  51. Randies, W.G.L., 1980,“De la Terre Plate au Globe Terrestre,” Librarie Armand Colin, Paris, pp.172.Google Scholar
  52. Roeser, H.A. and Rilat, M., 1982, “Identified Magnetic Sea-floor Spreading Anomalies (map),” Federal Institute for Geosciences and Natural Resources, Hannover, Germany, Geologisches Jahrbuch E 23:71–80.Google Scholar
  53. Sagnotti, L., Scalera, G. and Florindo, F. 1994, Gestione automatica del database paleomagnetico globale, Geoinfortnatica (in press).Google Scholar
  54. Sahni, A., 1984, Cretaceous-Paleocene Terrestrial Faunas of India: Lack of endemism during drifting of the Indian plate, Science 226, 441–443.ADSCrossRefGoogle Scholar
  55. Sahni, A., Rana, R.S. and Prasad, G.V.R., 1987, New evidence for paleobiogeographic intercontinental Gondwana relationships based on Late Cretaceous-Earliest Paleocene coastal faunas from peninsular India, in: “ Gondwana Six: Stratigraphy, Sedimentology, and Paleontology,” G.D. McKenzie, ed, AGU Geophys. Mon. n° 41:207–218.Google Scholar
  56. Sandwell, D.T. and Renkin, M.L., 1988, Compensation of swells and Plateaus in the North Pacific: No direct evidence for mantle convection, Jou.Geoph.Res. 93B:2775–2783.ADSCrossRefGoogle Scholar
  57. Scalera, G., 1988, Nonconventional Pangaea reconstructions. New evidences for an expanding Earth, Tectonophysics 146:365–383.ADSCrossRefGoogle Scholar
  58. Scalera, G., 1990, Palaeopoles on an expanding Earth: a comparison between synthetic and real data sets, Phys. Earth. Plan. lnt. 62:126–140.ADSCrossRefGoogle Scholar
  59. Scalera, G., 1991a, The significance of a new class of shape similarities for global tectonic theories, Atti 8° Congresso Annuale GNGTS 198 9, Roma, 635–639.Google Scholar
  60. Scalera, G., 1991b, Non-chaouc emplacements of arc-trench zones in the Pacific Hemisphere, PubblicazioneI.N.G. n°531, pp.19.Google Scholar
  61. Scalera, G., 1993, Non-chaotic emplacements of trench-arc zones in the Pacific Hemisphere, Annali di Geofisica XXXVI, n° 531:47–53.Google Scholar
  62. Scalera, G., Favali, P. and Florindo, F. 1993, Use of the paleomagnetic databases for geodynamical studies:some examples from the mediterranean region, in: “Recent Evolution and Seismicity of the MediterraneanRegion,” E. Boschi et al., eds., Kluwer Acad.Pub., Netherlands, 403–422.CrossRefGoogle Scholar
  63. Scalera, G. and Meloni, A., 1991, “L’evoluzione della Terra,” Dedalo Edizioni, Bari, pp.240.Google Scholar
  64. Scholl, D.W., Hein, J.R., Marlow, M. and Buffington, E.C., 1977, Meiji sediment tongue: North Pacific evidence for limited movement between the Pacific and North American plates, Geol.Soc.Am.Bull. 88:1567–1576.CrossRefGoogle Scholar
  65. Shields, O., 1979, Evidence for initial opening of the Pacific Ocean in the Jurassic, Palaeogeog.Palaeoclimat.Palaeoecol 26:181–220.CrossRefGoogle Scholar
  66. Shields, O., 1983, Trans-Pacific biotic links that suggest Earth expansion, in: “Expanding Earth Symposium,”S.W. Carey, ed., University of Tasmania, Sydney 1981, 199–205.Google Scholar
  67. Smith, A.B., 1988, Late Palaeozoic biogeography of East Asia and palaeontological constraints on platetectonic reconstructions, Phil.Trans.R.Soc.Lond. A 326:189–227.ADSCrossRefGoogle Scholar
  68. Smith, A.G. and Hallam, A., 1970, The fit of the southern continents, Nature 225:139–144.ADSCrossRefGoogle Scholar
  69. Stait, B. and Burrett, C., 1987, Biogeography of Australian and southeast Asian Ordovician nautiloids. in:“ Gondwana Six: Stratigraphy, Sedimentology, and Paleontology,” G.D. McKenzie, ed., AGU Geophys. Mon. n° 41:21–28.Google Scholar
  70. Stöcklin, J., 1984, The Tethys paradox in plate tectonics, in: “ Plate Reconstruction from Paleozoic Paleomagnetism,” R. Van der Voo, C.R. Scotese and N. Bonhommet,eds., AGU Geodyn. Ser. n° 12: 27–28.Google Scholar
  71. Stöcklin, J., 1989, Tethys evolution in the Afghanistan-Pamir-Pakistan region, in: “Tectonic Evolution of the Tethyan Region,” A.M.C. Sengor, ed., Kluver Academic Publishers, 241–264.Google Scholar
  72. Tripathi, C. and Singh, G., 1987, Gondwana and associated rocks of the himalaya and their significance, in:“ Gondwana Six: Stratigraphy, Sedimentology, and Paleontology,” G.D. McKenzie, ed., AGU Geophys. Mon. n°41:195–205.Google Scholar
  73. Truswell, E.M., 1991, Antarctica: a history of terrestrial vegetation, in: “The Geology of Antarctica,” R.J. Tingey, ed., Clarendon Press, Oxford, 499–537.Google Scholar
  74. UNESCO, 1976, “Geological World Atlas (22 maps),” Commission for the Geological map of the World (C.G.M.W.), UNESCO, ParisGoogle Scholar
  75. Walker, D.A., 1989, Seismicity of the interiors of plates in the Pacific Basin, EOS 70:1543–1544.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Giancarlo Scalera
    • 1
  1. 1.Istituto Nazionale di GeofisicaItaly

Personalised recommendations