Skip to main content

The Roles of Secondary Binding Sites for Transferrin in the Liver and on Macrophages

  • Chapter
  • 258 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 356))

Abstract

As reviewed by several authors, 1,2 ample evidence has been gathered over the past two decades to postulate a central role for specific receptors in transferrin-mediated iron metabolism of eukaryotic cells. These trypsin-sensitive3 glycoprotein dimers attract diferric transferrin (2Fe-Tf) from the extracellular fluid for endocytosis, followed by the release of iron in an intracellular location and return of both receptor and iron-free Tf (apo Tf) to the plasmalemma. Many observations, mainly on various hematopoietic cell lines, support the existence of an iron acquisition mechanism as just outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.B. Bromford, and H.N. Munro, Transferrin and its receptor: their roles in cell function, Hepatology. 5: 870 (1985).

    Article  Google Scholar 

  2. A. Dautry-Varsat, Receptor-mediated endocytosis: the intracellular journey of transferrin and its receptor, Biochimie. 68: 375 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. J.E. Lamb, F. Ray, J.H. Ward, J.P. Kushner, and J. Kaplan, Internalization and subcellular localization of transferrin and transferrin receptors in HeLa cells, J. Biol. Chem. 258: 8751 (1983).

    PubMed  CAS  Google Scholar 

  4. E.S. Cole, and J. Glass, Transferrin binding and iron uptake in mouse hepatocytes, Biochim. Biophys. Acta. 762: 102 (1983).

    Article  PubMed  CAS  Google Scholar 

  5. M.A. Page, E. Baker, and E.H. Morgan, Transferrin and iron uptake by rat hepatocytes in culture, Am. J. Physiol. 246: G26 (1984).

    PubMed  CAS  Google Scholar 

  6. J.R. Rudolph, E. Regoeczi, P.A. Chindemi, and M.T. Debanne, Preferential hepaticuptake of iron from rat asialotransferrin: possible engagement of two receptors, Am. J. Physiol 251: G398 (1986).

    PubMed  CAS  Google Scholar 

  7. M. Barry, Liver iron concentration, stainable iron, and total body storage iron, Gut. 15: 411 (1974).

    Article  PubMed  CAS  Google Scholar 

  8. L.-A. Fransson, I. Carlstedt, L. Coster, and A. Malmstrom, Binding of transferrin to the core protein of fibroblast proteoheparan sulfate, Proc. Natl Acad. Scl USA 81: 5657 (1984).

    Article  CAS  Google Scholar 

  9. E. Omoto, J.J. Minguell, and M. Tavassoli, Proteoglycan synthesis by cultured liver endothelium: the role of membrane-associated heparan sulfate in transferrin binding, Exp. Cell Res. 187: 85 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. W.-L. Hu, and E. Regoeczi, Hepatic heparan sulphate proteoglycan and the recycling of transferrin, Biochem. Cell Biol. 70: 535 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. W.-L. Hu, E. Regoeczi, P.A. Chindemi, and M. Bolyos, Lactoferrin interferes with uptake of iron from transferrin and asialotransferrin by the rat liver, Am. J. Physiol. 264: G112 (1993).

    PubMed  CAS  Google Scholar 

  12. J.H. Brock, and F.R. Arzabe, Cleavage of diferric bovine transferrin into two monoferric fragments, FEBS Lett. 69: 63 (1976).

    Article  PubMed  CAS  Google Scholar 

  13. J.H. Brock, F. Arzabe, F. Lampreave, and A. Pineiro. The effect of trypsin on bovine transferrin and lactoferrin, Biochim. Biophys. Acta. 446: 214 (1976).

    Article  PubMed  CAS  Google Scholar 

  14. E.H. Morgan, H. Huebers, and C.H. Finch, Differences between the binding sites for iron binding and release in human and rat transferrin, Blood. 52: 1219 (1978).

    PubMed  CAS  Google Scholar 

  15. J. Kaplan, Polypeptide-binding membrane receptors: Analysis and classification, Science. 212: 14 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. B. Ecarot-Charrier, V.L. Grey, A. Wilczynska, and H.M. Schulman, Reticulocyte membrane transferrin receptors, Can. J. Biochem. 58: 418 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. P.K. Bali, O. Zak, and P. Aisen, A new role for the transferrin receptor in the release of iron from transferrin, Biochemistry. 30: 324 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. P. Bali, and P. Aisen, Receptor-modulated iron release from transferrin: differential effects on N and C-terminal sites, Biochemistry. 30: 9947 (1991).

    Article  PubMed  CAS  Google Scholar 

  19. S.P. Young, and P. Aisen, Transferrin receptors and the uptake and release of iron by isolated hepatocytes, Hepatology. 1: 114 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. B.F. Anderson, H.M. Baker, G.E. Norris, S.V. Rumball, and E.N. Baker, Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins, Nature. 334: 784 (1990).

    Article  Google Scholar 

  21. P.H. Weigel, Receptor recycling and ligand processing mediated by hepatic galactosyl receptors: a two-pathway system, in: Vertebrate Lectins, K. Olden and J.B. Parent, eds., Van Nostrand Reinhold Co., New York (1987).

    Google Scholar 

  22. M. Lyon, and J.T. Gallagher, Purification and partial characterization of the major cell-associated heparan sulphate proteoglycan of rat liver, Biochem. J. 273: 415 (1991).

    PubMed  CAS  Google Scholar 

  23. J.R. Radolph, E. Regoeczi, and S. Southward, Quantification of rat hepatocyte transferrin receptors with poly-and monoclonal antibodies and protein A, Histochemistry. 88: 187 (1988).

    Article  Google Scholar 

  24. K.J. Williams, G.M. Fless, K.A. Petrie, M.L. Snyder, R.W. Brocia, and T.L. Swenson, Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins, J. Biol Chem. 267: 13284 (1992).

    PubMed  CAS  Google Scholar 

  25. S. Eisenberg, E. Sehayek, T. Olivecrona, and I. Vlodavsky, Lipoprotein lipase enhances binding of lipoproteins to heparan sulfate on cell surfaces and extracellular matrix, J. Clin. Invest. 90: 2013 (1992).

    Article  PubMed  CAS  Google Scholar 

  26. W.-L. Hu, P.A. Chindemi, and E. Regoeczi, In vivo behaviour of rat transferrin bearing a hybrid glycan and its interaction with macrophages, Biochem. Cell Biol 70: 636 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Regoeczi, E., Hu, WL., Chindemi, P.A., Janicka, M. (1994). The Roles of Secondary Binding Sites for Transferrin in the Liver and on Macrophages. In: Hershko, C., Konijn, A.M., Aisen, P. (eds) Progress in Iron Research. Advances in Experimental Medicine and Biology, vol 356. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2554-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2554-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6090-2

  • Online ISBN: 978-1-4615-2554-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics