The Principles of Classical Mechanics and their Actuality in Contemporary Microphysics

  • Jean Reignier

Abstract

The principles of classical and quantum mechanics are presented in a new way which emphasizes the different conceptual approaches to localization in space for both theories. It is shown that the idea that matter is permanently localized in space is fundamental in classical mechanics but not in quantum mechanics. We discuss an experimental situation where spin-1/2 particles exhibit a non-local behaviour.

Key words

Classical mechanics quantum mechanics locality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hertz, H., The principles of mechanics presented in a new form (Dover, New York,1956); first German edition, 1894.Google Scholar
  2. [2]
    Poincaré, H., “Les idées de Hertz sur la mécanique,” Revue Générale des Sciences 8, 734–743 (1897); in Oeuvres de H. PoincaréVII ,231–250 (Paris, 1952).Google Scholar
  3. [3]
    Poincaré, H., La science et l’hypothèse (Flammarion, Paris, 1968); first edition: Flammarion, 1902.Google Scholar
  4. [4]
    Kant, E., Critique de la raison pure (Quadrige/Presses Universitaires de France, 1990); first German edition, 1781.Google Scholar
  5. [5]
    Poincaré, H., La valeur de la science (Du Cheval Ailé, Geneve, 1946); first edition: Flammarion, 1905.Google Scholar
  6. [6]
    Wheeler, J.A., “Information, physics, quantum: The search for links,” in Proceedings Third International Symposium on Foundations of Quan tum Mechanics (Japanese Physical Society, Tokyo, 1989, pp.354–358.Google Scholar
  7. [6a]
    Frenkel, A., “Spontaneous localizations of the wave function and classical behaviour,” Found. Phys. 20, 159–188 (1990).ADSCrossRefGoogle Scholar
  8. [7]
    de Broglie, L., Les incertitudes d Heisenberg et Interpretation proba biliste de la mécanique ondulatoire (Gauthier-Villars, Paris, 1982).Google Scholar
  9. [7a]
    van der Merwe, A., Heisenberg’s uncertainties and the probabilistic interpretation of wave mechanics (Kluwer Academic, Dordrecht, 1990).Google Scholar
  10. [8]
    Electrons et photons (Rapports et discussions du 5ième Conseil de Physique tenu à Bruxelles du 24 au 19 octobre 1927, Institut International de Physique Solvay)(Gauthier-Villars, Paris, 1928).Google Scholar
  11. [9]
    de Broglie, L., La théorie de la mesure en mécanique ondulatoire (Gauthier-Villars, Paris, 1957).Google Scholar
  12. [10]
    Cornu, L., La mécanique. Les idées et les faits (Flammarion, Paris,1918), Chap.1, Considerations générales.Google Scholar
  13. [11]
    Mach, E., La mécanique. Expos é historique et critique de son développement (Jacques Gabay, Paris, 1987); first German edition, 1883.Google Scholar
  14. [12]
    Aerts, D., and Reignier, J., “On the problem of non-locality in quantum mechanics,” Helv. Phys. Acta 64, 527–547 (1991).Google Scholar
  15. [13]
    Rauch, H., et al., “Verification of coherent spinor rotation of fermions,” Phys. Letters 54A, 425 (1975).ADSGoogle Scholar
  16. [13a]
    Rauch, H., “Neutron interferometric tests of quantum mechanics,” Helv. Phys. Acta 61, 589 (1988).Google Scholar
  17. [14]
    Jammer, M., Concepts of spaces. The history of theories of space in physics ,2nd edition (Harvard University Press, Cambridge, Massachusetts, 1969).Google Scholar
  18. [15]
    Dirac, P.A.M., The principles of quantum mechanics (Oxford University Press, Oxford, 1930), Chap.1, The principle of superposition.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jean Reignier
    • 1
  1. 1.Theoretische NatuurkundeVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations