Compatible Statistical Interpretation of Interference in Double-Slit Interferometer

  • Mirjana Božić


De Broglian probabilities, associated with two characteristic sets of trajectories in the double-slit interferometer, are evaluated and graphically presented. The change of de Broglian probabilities with attenuation coefficient a shows a remarkable consistency with the underlying physical picture.

Key words

de Broglian probabilities compatibility wave and particle interference quanton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bohr, “Discussion with Einstein on epistemological problems in atomic physics,” in Albert Einstein: Philosopher-Scientist ,P. A. Schilpp, ed. (Open Court, La Salle, Illinois, 1949), p. 200.Google Scholar
  2. 2.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).MATHGoogle Scholar
  3. 3.
    L. de Broglie, Etude critique des bases de V interpretation actuelle de la mecanique ondulatoire (Gauthier-Villars, Paris, 1963).Google Scholar
  4. 4.
    L. de Broglie, Recherches sur la théorie des quanta (These, Paris, 1924); reprinted in Ann. Fond. Louis de Broglie 17, 1 (1992).Google Scholar
  5. 5.
    F. Selleri, Found. Phys. 12, 1087 (1982).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A. O. Barut, “Quantum Theory of Single Events,” in Symposium on the Foundations of Modern Physics 1990 ,P. Lahti and P. Mitelstaedt, eds. (World Scientific, Singapore, 1991).Google Scholar
  7. 7.
    D. Bohm and J. P. Vigier, Phys. Rev. 96, 208 (1954).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    A. Garuccio, V. Rapisarda, and J. P. Vigier, Phys. Lett. 90A, 17 (1982).ADSGoogle Scholar
  9. 9.
    N. C. Petroni, Phys. Lett. A 14, 370 (1989); 160, 107 (1991).MATHCrossRefGoogle Scholar
  10. 10.
    N. O. Scully, B. G. Englert, and H. Walther, Nature 351, 6322 (1991).CrossRefGoogle Scholar
  11. 11.
    G. Lochak, “De Broglie’s initial conception of de Broglie waves,” in The Wave-Particle Dualism ,S. Diner, D. Fargue, G. Lochak, and F. Selleri, eds. (Reidel, Dordrecht, 1984).Google Scholar
  12. 12.
    F. Selleri and G. Tarozzi, Nuovo Cimento 43, 31 (1978).MathSciNetGoogle Scholar
  13. 13.
    G. Tarozzi, in The Wave-Particle Dualism ,S. Diner, D. Fargue, G. Lochak, and F. Selleri, eds. (Reidel, Dordrecht, 1984).Google Scholar
  14. 14.
    M. Božić and Z. Marić, Phys. Lett A 158, 33 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    M. Božić, Z. Marić, and J. P. Vigier, Found. Phys. 22, 1325 (1992).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    M. Božić and Z. Marić, “Probability and interference,” to be published in “Courants, amers, écueils en microphysique,” G. Lochak. ed.Google Scholar
  17. 17.
    J. Summhammer, H. Rauch, and D. Tuppinger, Physica B 151, 103 (1988).CrossRefGoogle Scholar
  18. 18.
    H. Rauch and J. Summhammer, Phys. Lett. A 104, 44 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    S. I. Tomonaga, Quantum Mechanics, Vol. II (North-Holland, Amsterdam, 1966).MATHGoogle Scholar
  20. 20.
    A. Zeilinger, M. A. Home, and C. O. Schull, in Proc. Int. Symp. Foun dations of Quantum Mechanics ,S. Kamifuchi et al., eds. (Physical Society of Japan, Tokyo, Japan, 1983), pp. 389–393.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Mirjana Božić
    • 1
  1. 1.Institute of PhysicsBeogradYugoslavia

Personalised recommendations