Genetic Manipulation of Lignin and Phenylpropanoid Compounds Involved in Interactions with Microorganisms

  • Richard A. Dixon
  • Carl A. Maxwell
  • Weiting Ni
  • Abraham Oommen
  • Nancy L. Paiva
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 28)


Increasing knowledge of the biochemistry of plant secondary product synthesis, and the cloning of biosynthetic pathway genes, has opened up the possibility of engineering novel pathways or reducing unwanted metabolites by genetic engineering strategies. Such approaches should lead to significant improvements in agronomic performance and post-harvest processing. At present, the necessary knowledge base is most advanced in the area of phenylpropanoid derivatives and certain alkaloids. Further advances in our understanding of terpenoid biochemistry, and our ability to genetically transform cereals and large seeded legumes, are required to underpin fuller exploitation of genetic manipulation of secondary metabolism for plant improvement.


Caffeic Acid Sinapyl Alcohol Lignin Level PHENYLPROPANOID Compound Phytoalexin Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DIXON, R.A., CHOUDHARY, A.D., DALKIN, K., EDWARDS, R., FAHRENDORF, T., GOWRI, G., HARRISON, M.J., LAMB, C.J., LOAKE, G.J., MAXWELL, C.A., ORR, J., PAIVA, N.L. 1992. Molecular biology of stress-induced phenylpropanoid and isoflavonoid biosynthesis in alfalfa. In: Phenolic Metabolism in Plants, (H.A. Stafford, R.K. Ibrahim, eds), Plenum Press, New York, pp 91–138.CrossRefGoogle Scholar
  2. 2.
    FAHRENDORF, T., DIXON, R.A. 1993. Stress responses in alfalfa (Medicago sativa L.). XVIII. Molecular cloning and expression of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450. Arch. Biochem. Biophys.305:509–515.PubMedCrossRefGoogle Scholar
  3. 3.
    GUNIA, W., HINDERER, W., WITTKAMPF, U., BARZ, W. 1991.Elicitor induction of cytochrome P450 monooxygenases in cell suspension cultures of chickpea (Cicer arietinum L.) and their involvement in pterocarpan phytoalexin biosynthesis. Z. Naturforsch. 46C: 58–66.Google Scholar
  4. 4.
    DIXON, R.A., BHATTACHARYYA, M.K., HARRISON, M.J.,FAKTOR, O., LAMB, C.J., LOAKE, G.J., NI, W., OOMMEN, A., PAIVA, N.L., STERMER, B., YU, L.M. 1993. Transcriptional regulation of phytoalexin biosynthetic genes. In: Advances in Molecular Genetics of Plant-Microbe Interactions, (E.W. Nester, D.P.S. Verma, eds), Kluwer Academic Publishers, Dordrecht, pp 497–509.CrossRefGoogle Scholar
  5. 5.
    LINDSAY, W.P., LAMB, C.J., DIXON, R.A. 1993. Microbial recognition and activation of plant defense systems. Trends in Microbiol. 1:181–187.CrossRefGoogle Scholar
  6. 6.
    WALTER, M.H. 1992. Regulation of lignification in defense. In: Plant Gene Research. Genes Involved in Plant Defense (T. Boller, F. Meins, eds.), Springer, Wien, pp 327–353.CrossRefGoogle Scholar
  7. 7.
    CASLER, M.D. 1987. In vitro digestibility of dry matter and cell wall constituents of smooth bromegrass forage. Crop Sci. 27: 931–934.CrossRefGoogle Scholar
  8. 8.
    ALBRECHT, K.A., WEDIN, W.F., BUXTON, D.R. 1987. Cell wall- composition and digestibility of alfalfa stems and leaves. Crop Sci. 27:735–741.CrossRefGoogle Scholar
  9. 9.
    ELKIND, Y., EDWARDS, R., MAVANDAD, M., HEDRICK, S.A.,RIBAK, O., DIXON, R.A., LAMB, C.J. 1990. Abnormal plant development and down regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc. Natl. Acad. Sci. USA 87: 9057–9061.PubMedCrossRefGoogle Scholar
  10. 10.
    CRAMER, C.L., EDWARDS, K., DRON, M., LIANG, X., DILDINE, S.L., BOLWELL, G.P., DIXON, R.A., LAMB, C.J., SCHUCH, W. 1989. Phenylalanine ammonia-lyase gene organization and structure. Plant Mol. Biol. 12: 367–383.CrossRefGoogle Scholar
  11. 11.
    GOWRI, G., BUGOS, R.C., CAMPBELL, W.H., MAXWELL, C.A.,DIXON, R.A. 1991. Stress responses in alfalfa (Medicago sativa L.). X. Molecular cloning and expression of S-adenosyl-L-methionine: caffeic acid 3-O-methyltransferase, a key enzyme of lignin biosynthesis. Plant Physiol. 97: 7–14.PubMedCrossRefGoogle Scholar
  12. 12.
    JAECK, E., DUMAS, B., GEOFFROY, P., FAVET, N., INZE, D.,VAN MONTAGU, M., FRITIG, B., LEGRAND, M. 1992. Regulation of enzymes involved in lignin biosynthesis: induction of O-methyltransferase mRNAs during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol. Plant Microbe. Interact. 5: 294–300.PubMedCrossRefGoogle Scholar
  13. 13.
    NI, W., PAIVA, N.L., DIXON, R.A. 1993. Reduced lignin in transgenic plants containing an engineered caffeic acid O-methyltransferase antisense gene. Transgenic Pres., in press.Google Scholar
  14. 14.
    LEROUGE, P., ROCHE, P., FAUCHER, C., MAILLET, F.,TRUCHET, G., PROME’, J.C., DEBNARIE’, J. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784.PubMedCrossRefGoogle Scholar
  15. 15.
    TRUCHET, G., ROCHE, P., LEROUGE, P., VASSE, J., CAMUT, S.,DE BILLY, F., PROME’, J.C., DENARIE’, J. 1991. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673.CrossRefGoogle Scholar
  16. 16.
    HARTWIG, U.A., MAXWELL, C.A., JOSEPH, C.M., PHILLIPS,D.A. 1990. Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol., 92: 116–122.PubMedCrossRefGoogle Scholar
  17. 17.
    MAXWELL, C.A., HARTWIG, U.A., JOSEPH, C.M., PHILLIPS,D.A. 1989. A chalcone and two related flavonoids released from alfalfa roots induce nod genes in Rhizobium meliloti. Plant Physiol. 91: 842–847.PubMedCrossRefGoogle Scholar
  18. 18.
    DAKORA, F., JOSEPH, C.M., PHILLIPS, D.A. 1993. Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol. 101: 819–824.PubMedGoogle Scholar
  19. 19.
    FIRMIN, J.L., WILSON, K.E., ROSSEN, L., JOHNSTON, A.W.B.1986. Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324: 90–92.CrossRefGoogle Scholar
  20. 20.
    KOSSLAK, R.M., BOOKLAND, R., BARKEI, J., PAAREN, H.E.,APPELBAUM, E.R. 1987. Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. USA 84: 7428–7432.PubMedCrossRefGoogle Scholar
  21. 21.
    HARTWIG, U.A., JOSEPH, C.M., PHILLIPS, D.A. 1991. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 95: 797–803.PubMedCrossRefGoogle Scholar
  22. 22.
    WELLE, R., SCHRODER, G., SCHILTZ, E., GRISEBACH, H.,SCHRODER, J. 1991. Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63). Eur. J. Biochem. 196: 423–430.PubMedCrossRefGoogle Scholar
  23. 23.
    HARTWIG, U.A., MAXWELL, C.A., JOSEPH, C.M., PHILLIPS, D.A. 1990. Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J. Bacteriol. 172: 2769–2773.PubMedGoogle Scholar
  24. 24.
    KAPULNIK, Y., JOSEPH, C.M., PHILLIPS, D.A. 1987. Flavone limitations to root nodulation and symbiotic nitrogen fixation. Plant Physiol. 84: 1193–1196.PubMedCrossRefGoogle Scholar
  25. 25.
    JAIN, V., GARG, N., NAINAWATEE, H.S. 1990. Naringenin enhanced efficiency of Rhizobium meliloti-alfalfa symbiosis. World J. Microbiol. 6: 434–436.CrossRefGoogle Scholar
  26. 26.
    MAXWELL, C.A., EDWARDS, R., DIXON, R.A. 1992. Identification, purification, and characterization of S-adenosyl-L-methionine: isoliquiritigenin 2’-O-methyltransferase from alfalfa (Medicago sativa L.). Arch. Biochem. Biophys. 293: 158–166.PubMedCrossRefGoogle Scholar
  27. 27.
    MAXWELL, C.A., HARRISON, M.J., DIXON, R.A. 1993. Molecular characterization and expression of alfalfa isoliquiritigenin 2’-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium meliloti nodulation genes. Plant J., in press.Google Scholar
  28. 28.
    BHATTACHARYYA, M.K., WARD, E.W.B. 1986. Resistance, susceptibility, and accumulation of glyceollins I-III in soybean organs inoculated with Phytophthora megasperma f.sp. glycinea. Physiol. Mol. Plant Pathol. 29: 227–237.CrossRefGoogle Scholar
  29. 29.
    VAN ETTEN, H.D., MATTHEWS, D.E., MATTHEWS, P.S. 1989.Phytoalexin detoxification: Importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27: 143–164.CrossRefGoogle Scholar
  30. 30.
    INGHAM, J.L., KEEN, N.T., HYMOWITZ, T. 1977. A new isoflavone phytoalexin from fungus-inoculated stems of Glycine wightii. Phytochemistry 16: 1943–1946.CrossRefGoogle Scholar
  31. 31.
    WOODWARD, M.D. 1979. Phaseoluteone and other 5- hydroxyisoflavonoids from Phaseolus vulgaris. Phytochemistry 18: 363–365.CrossRefGoogle Scholar
  32. 32.
    ADESANYA, S.A., O’NEILL, M.J., ROBERTS, M.F. 1986. Structure- related fungitoxicity of isoflavonoids. Physiol. Mol. Plant Pathol. 29: 95–103.CrossRefGoogle Scholar
  33. 33.
    BIGGS, D.R.M., WELLE, R., VISSER, F.R., GRISEBACH, H. 1987.Dimethylallylpyrophosphate: 3,9-dihydroxypterocarpan 10-dimethylallyl transferase from Phaseolus vulgaris. FEBS Lett. 220: 223–226.CrossRefGoogle Scholar
  34. 34.
    ATTUCCI, S., GULICK, P., IBRAHIM, R.K. 1993. Differential hybridization strategy for cloning plant isoflavone prenyltransferases. (Abstr) Plant Physiol. Supplement 102: 114.Google Scholar
  35. 35.
    EDWARDS, R., DIXON, R.A. 1991. Isoflavone O-methyltransferase activities in elicitor-treated cell suspension cultures of Medicago sativa. Phytochemistry 30: 2597–2606.CrossRefGoogle Scholar
  36. 36.
    PREISIG, C.L., MATTHEWS, D.E., VAN ETTEN, H.D. 1991. Purification and characterization of S-adenosyl-L-methionine: 6a-hydroxymaackiain 3-O-methyltransferase from Pisum sativum. Plant Physiol. 91: 559–566CrossRefGoogle Scholar
  37. 37.
    DEWICK, P. 1988. Isoflavonoids. In: The Flavonoids: Advances in Research Since 1980, (J.B. Harborne, ed), Chapman and Hall, New York, p 166.Google Scholar
  38. 38.
    DELSERONE, L.M., MATTHEWS, D.E., VAN ETTEN, H.D. 1992. Differential toxicity of enantiomers of maackiain and pisatin to phytopathogenic fungi. Phytochemistry 31: 3813–3819.CrossRefGoogle Scholar
  39. 39.
    VAN ETTEN, H.D., MATTHEWS, P.S., MERCER, E.H. 1983. (+)-Maackiain and (+) medicarpin as phytoalexins in Sophora japonica and identification of the (-) isomers by biotransformation. Phytochemistry 22: 2291–2295.CrossRefGoogle Scholar
  40. 40.
    PAIVA, N.L., EDWARDS, R., SUN, Y., HRAZDINA, G., DIXON, R.A. 1991. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol. Biol. 17: 653–667.PubMedCrossRefGoogle Scholar
  41. 41.
    SMITH, D.A. 1982. Toxicity of phytoalexins. In: Phytoalexins, (J.A.Bailey, J.W. Mansfield, eds), John Wiley and Sons, New York, pp 218–252.Google Scholar
  42. 42.
    HAIN, R., REIF, H.-J., KRAUSE, E., LANGEBARTELS, R., KINDL,H., VORNAM, B., WIESE, W., SCHMELZER, E., SCHREIER, P.H., STOCKER, R.H., STENZEL, K. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156.PubMedCrossRefGoogle Scholar
  43. 43.
    DIXON, R.A., LAMB, C.J. 1990. Regulation of secondary metabolism at the biochemical and genetic levels. In: Secondary Products from Plant Tissue Culture, (B.V. Charlwood and M.J.C. Rhodes eds), Clarendon Press, Oxford, pp 103–118.Google Scholar
  44. 44.
    YU, L.M., LAMB, C.J., DIXON, R.A. 1993. Purification and biochemical characterization of proteins which bind to the H-box cis-element implicated in transcriptional activation of plant defense genes. Plant J. 3:805–816.PubMedCrossRefGoogle Scholar
  45. 45.
    DANIEL, S., TIEMANN, K., WITTKAMPF, U., BLESS, W.,HINDERER, W., BARZ, W. 1990. Elicitor-induced metabolic changes in cell cultures of chickpea (Cicer arietinum L.) cultivars resistant and susceptible to Ascochyta rabiei. Planta 182: 270–278.CrossRefGoogle Scholar
  46. 46.
    PARNISKE, M., AHLBORN, B., WERNER, D. 1991. Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean Rhizobia. J. Bacteriol. 173: 3432–3439.PubMedGoogle Scholar
  47. 47.
    PARNISKE, M.C., FISCHER, H.-M., HENNECKE, H., WERNER, D.1991. Accumulation of the phytoalexin glyceollin I in soybean nodules infected by a Bradyrhizobium japonicum nifA mutant. Z. Naturforsch. 46C: 318–320.Google Scholar
  48. 48.
    ROBY, D., BROGLIE, K., CRESSMAN, R., BIDDLE, P., CHET, I.,BROGLIE, R. 1990. Activation of a bean chitinase promoter in transgenic tobacco plants by phytopathogenic fungi. Plant Cell 2: 999–1007.PubMedGoogle Scholar
  49. 49.
    STERMER, B.A., SCHMID, J., LAMB, C.J., DIXON, R.A. 1990.Infection and stress activation of a bean chalcone synthase promoter in transgenic tobacco. Mol. Plant-Microbe Interact. 3: 381–388.CrossRefGoogle Scholar
  50. 50.
    ZHU, Q., DOERNER, P.W., LAMB, C.J. 1992. Developmental and stress regulation of a rice chitinase gene promoter in transgenic tobacco. Plant J. 3: 203–212.CrossRefGoogle Scholar
  51. 51.
    BENFEY, P.N., CHUA, N.-H. 1989. Regulated genes in transgenic plants. Science 244: 174–181.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Richard A. Dixon
    • 1
  • Carl A. Maxwell
    • 2
  • Weiting Ni
    • 1
  • Abraham Oommen
    • 1
  • Nancy L. Paiva
    • 1
  1. 1.Plant Biology DivisionSamuel Roberts Noble FoundationArdmoreUSA
  2. 2.DuPont Agricultural ProductsStine Haskell Research CenterNewarkUSA

Personalised recommendations