High Energy Ionization in Liquids — The Free Ion Yield

  • Richard Holroyd
Part of the NATO ASI Series book series (NSSB, volume 326)

Abstract

Ionizations can be produced in liquids in many ways, for example by exposure to high energy radiation (fast electrons or alphas) or by interaction with ultraviolet photons of sufficient energy. The passage of a high energy electron results in well separated clusters, each containing a few ionizations or in the case of alpha particles a dense column of ionization. Absorption of ultraviolet light creates a single ion-electron pair. In any case only a fraction of the ion-electron pairs formed initially separate to become free; in most liquids recombination within the track or cluster dominates. The yield of ion electron pairs that separate and become free depends on several factors including the molecular structure of the solvent, the density of ionization along the track, the liquid density, the applied field and the temperature1.

Keywords

Benzene Recombination Hydrocarbon Alkane Acetylene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. R. Freeman, “Ionization and charge separation in irradiated materials ” in “Kinetics of nonhomogeneous processes” G. R. Freeman, ed. J. Wiley and Sons NY. (1987).Google Scholar
  2. 2.
    W. F. Schmidt, Radiation-induced conductivity and ion yields in neopentane at high electric fields, Radiation Research 42: 73 (1970).CrossRefGoogle Scholar
  3. 3.
    W. F. Schmidt, R. A. Holroyd, Ion mobilities and yields in X-irradiated polydimethylsiloxane oils, Radiat. Phys. Chem. 39: 349 (1992).Google Scholar
  4. 4.
    W. F. Schmidt, A. O. Allen, Ionization of liquids by radiation: measurements by a clearing field, Science 160: 301 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    W. F. Schmidt, A. O. Allen, Free ion yields in sundry irradiated liquids, J. Chem. Phys. 52: 2345 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    G. Ramanan, N. Gee, G. R. Freeman, Electron energy loss in fluids: thermalization distances in liquid and gaseous sulfur hexafluoride. Can. J. Phys. 68: 925 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    N. Gee, C. Senanayake, G. R. Freeman, Electron mobility, free ion yields, and electron thermalization distances in n-alkane liquids: effect of chain length, J. Chem. Phys. 89: 3710 (1989).ADSCrossRefGoogle Scholar
  8. 8.
    R. Holroyd, Effects of radiation damage to TMP, TMS and liquid argon solutions, in Radiation Effects at the SSC, M. G. D. Gilchriese, ed. SSC-SR-1035 p339 (1988).Google Scholar
  9. 9.
    A. O. Allen, Yields of free ions formed in liquids by radiation, NSRDS-NBS-57 (1976).Google Scholar
  10. 10.
    J-P. Dodelet, K. Shinsaka, G. R. Freeman, Electron mobilities in liquid olefins: structure effects, J. Chem. Phys. 59: 1293 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    R. A. Holroyd, Electron reactions in nonpolar liquids - pressure effects, proceedings-this ASI.Google Scholar
  12. 12.
    T. Shida, W. H. Hamill, Molecular Ions VI. Electronic absorption and electron paramagnetic resonance spectra of molecular ions of conjugated dienes and allyl radicals, J. Am. Chem. Soc. 88: 5371 (1966).CrossRefGoogle Scholar
  13. 13.
    T Shida, S. Iwata, Electronic spectra of Ion radicals and their molecular orbital interpretation III aromatic hydrocarbons, J. Am. Chem. Soc. 95: 3473 (1973).CrossRefGoogle Scholar
  14. 14.
    R. Holroyd, Free ion yields in liquids-molecular structure effects, in “Proceedings International Conference on Liquid Radiation Detectors: Their Fundamental Properties and Applications”, Waseda Univ. Tokyo, Japan p24 (1992).Google Scholar
  15. 15.
    R. A. Holroyd, S. Geer, F. Ptohos, Free-ion yields for several silicon-, germanium, and tin-containing liquids and their mixtures, Phys. Rev. B 43: 9003 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    M. Chybicki, Ionization currents induced by alpha radiation in liquid hexane and heptane, Acta Phys. Pol, 30: 927 (1966).Google Scholar
  17. 17.
    R. C. Munoz, J. B. Cumming, R. A. Holroyd, Ionization of liquid hydrocarbons and tetramethylsilane by 241 Am alpha particles, J. Chem. Phys. 85: 1104 (1986).ADSCrossRefGoogle Scholar
  18. 18.
    R. A. Holroyd, in “SSC Detector R and D at BNL”, B. Yu and V. Radeka, eds, BNL 52244 p23 (1990).Google Scholar
  19. 19.
    J. -P. Jay-Gerin, T. Goulet, I. Billard, On the correlation between electron mobility, free-ion yield, and electron thermalization distance in nonpolar dielectric liquids, Can J. Chem. 71: 287 (1993).CrossRefGoogle Scholar
  20. 20.
    B. S. Yakovlev, Low energy electron localization in hydrocarbon glasses. Method of photoassisted ion pair separation, Radiat. Phys. Chem 40: 37 (1992).Google Scholar
  21. 21.
    L. Onsager, Initial recombination of ions, Phys. Rev, 54: 554 (1938).ADSCrossRefGoogle Scholar
  22. 22.
    J. Terlecki, J. Fiutak, Onsager’s recombination theory applied to liquid alkanes, Int. J. Radiation Phys. and Chem. 4: 469 (1972).ADSCrossRefGoogle Scholar
  23. 23.
    R. A. Holroyd, R. L. Russell, Solvent and temperature effects in the photoionization of tetramethyl-p-phenylenediamine, J. Phys. Chem. 78: 2128 (1974).CrossRefGoogle Scholar
  24. 24.
    T. G. Ryan, G. R. Freeman, Electron mobilities and ranges in methyl substituted pentanes through the liquid and critical regions, J. Chem. Phys., 68: 5144 (1978).ADSCrossRefGoogle Scholar
  25. 25.
    S. Geer, R. A. Holroyd, Electron thermalization lengths and total initial ionization yields in tetra-alkyl liquids, Phys. Rev. B. 46: 5043 (1992).ADSCrossRefGoogle Scholar
  26. 26.
    R. A. Holroyd and T. K. Sham, Ion yields in hydrocarbon liquids exposed to X-rays of 5–30 keV Energy, J. Phys. Chem. 89: 2909 (1985).CrossRefGoogle Scholar
  27. 27.
    R. A. Holroyd, T. K. Sham, B.-X. Yang and X.-H. Feng, Free Ion yields exposed to synchrotron X-rays, J. Phys. Chem. 96: 7438 (1992).CrossRefGoogle Scholar
  28. 28.
    W. M. Bartczak, A. Hummel, Computer simulation study of spatial distribution of the ions and electrons in tracks of high energy electrons and the effect on the charge recombination, J. Phys. Chem. 97: 1253 (1993).CrossRefGoogle Scholar
  29. 29.
    G. Jaffé, Zur theorie der ionisation in kolonnen, Annalen der Physik 42: 303 (1913).ADSCrossRefMATHGoogle Scholar
  30. 30.
    H. A. Kramers, On a modification of Jaffé’s theory of column - ionization, Physica 18: 665 (1952).ADSCrossRefMATHGoogle Scholar
  31. 31.
    R. A. Holroyd and E. Stradowska, unpublished.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Richard Holroyd
    • 1
  1. 1.Department of ChemistryBrookhaven National LaboratoryUptonUSA

Personalised recommendations