Light-Induced Electron Emission from Surfaces of Organic Liquids

  • Klaus Lacmann
  • Hitoshi Koizumi
  • Werner F. Schmidt
Part of the NATO ASI Series book series (NSSB, volume 326)


The method of Ultraviolet Photoelectron Emission (UPE) is described and has been applied to determine the total quantum yield of photoelectrons by excitation from the energy threshold up to several electron volts above it in the energy range between 6 and 11 eV. Several high-molecular organic liquids were studied, which have a vapor pressure smaller than 10-4 Pa at room temperature. The results of several phthalates and long chain hydrocarbons such as squalane and squalene are discussed, σ- and π-bonds show different threshold energies. The total quantum yields approach a saturation value of 10-2 to 10-1 at three electron volts above the threshold.


Quantum Yield Threshold Energy Dibutyl Phthalate Vacuum Ultraviolet Polarization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birkhoff, R. D., J. M. Heller, J., Painter, L. R., Ashley,J. C., and H. H. Hubbell,J., Photo emission and electron mean free paths in liquid formamide in the vacuum UV, J. Chem. Phys. 76:5208 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Birkhoff, R. D., H. H. Hubbell, J., Ashley, J. C., and Painter, L R., Yields and mean free paths of photoelectrons from liquid hexamethyl phosphoric triamide, J. Chem. Phys. 77:4350 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    Delahay, P., Photoelectron Emission Spectroscopy of Liquids and Solutions, in “Electron Spectroscopy: Theory, Tech. Appl.”, ed. by C. R. Brundle and A. D. Baker, Academic, London, 1984, Vol. 5, pp. 123Google Scholar
  4. 4.
    Watanabe, L, Ono, K., and Ikeda, S., Photoelectron emission study of iron(II) and cobalt(II) complexes in aqueous solution. Reorganization energies., Bull. Chem. Soc. Jpn. 64:352 (1991)CrossRefGoogle Scholar
  5. 5.
    Samson, J. A. R., “Techniques of Vacuum Ultraviolet Spectroscopy”, Wiley, New York, (1967)Google Scholar
  6. 6.
    Cairns, R. B., and Samson, J. A. R., Metal Photo cathodes as Secondary Standards for Absolute Intensity measurements in the Vacuum Ultraviolet, J. Opt. Soc. Am. 56:1568 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    Krolikowski, W. F., and Spicer, W. E., Photo emission Studies of the Noble Metals. II. Gold, Phys. Rev. B 1:478 (1970)ADSGoogle Scholar
  8. 8.
    Watanabe, K., Matsunaga, F. M., and Sakai, H., Absorption coefficient and photo ionization yield of NO in the region 580–1350 Å, Appl. Opt. 6:391 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    Pope, M., and Swenberg, C. E., “Electronic Processes in Organic Crystals”, Clarendon, Oxford, (1982)Google Scholar
  10. 10.
    Kochi, M., Harada, Y., Hirooka, T., and Inokuchi, H., Photo emission from organic crystal in vacuum ultraviolet region. IV, Bull. Chem. Soc. Jpn. 43:2690(1970)CrossRefGoogle Scholar
  11. 11.
    Belkind, A. I., Brodskii, A. M., and Grechov, V. V., Theory of Photo emission from Molecular Crystals, Phys. Stat. Sol. (b) 85:465 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    Watanabe, I., Flanagan, J. B., and Delahay, P., Vacuum ultraviolet photoelectron emission spectroscopy of water and aqueous solutions, J. Chem. Phys. 73:2057 (1980)ADSCrossRefGoogle Scholar
  13. 13.
    Brodsky, A. M., An investigation of the photoelectron emission from solutions containing solvated electrons, and the physical nature of the solvated electron, J. Phys. Chem. 84:1856 (1980).CrossRefGoogle Scholar
  14. 14.
    Fujihira, M., and Inokuchi, H., Photo emission from Polyethylene, Chem. Phys. Lett. 17:554 (1972)ADSCrossRefGoogle Scholar
  15. 15.
    Less, K. J., and Wilson, E. G., Intrinsic photo conduction and photo emission in polyethylene, J. Phys. C 6:3110 (1973)ADSCrossRefGoogle Scholar
  16. 16.
    Chen, S. X., Seki, K., Inokuchi, H., Hashimoto, S., Ueno, N., and Sugita, K., Ultraviolet photoelectron spectroscopy of some fundamental vinyl polymers and the evolution of their electronic structures, Bull. Chem. Soc. Jpn. 58:890 (1985)CrossRefGoogle Scholar
  17. 17.
    Kimura, K., Katsumata, S., Achiba, Y., Yamazaki, T., and Iwata, S., “Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules”, Japan Scientific Societies Press, Tokyo, (1981)Google Scholar
  18. 18.
    Ashmore, F. S., and Burgess, A. R., Photoelectron Spectra of the Unbranched C5–C7 Alkenes, Aldehydes, and Ketones, J. Chem. Soc. Faraday Trans. II 74:485 (1978)CrossRefGoogle Scholar
  19. 19.
    Selim, E. T. H., and Helal, A. I., The study of C1–C3 monosubstituted alkyl benzenes by the inverse convolution of first differential ionization efficiency curves, Org. Mass Spectrom. 17:539 (1982)CrossRefGoogle Scholar
  20. 20.
    McLoughlin, R. G., and Traeger, J. C., A photo ionization study of some benzoyl compounds-Thermochemistry of [C7H50]+ Formation, Org. Mass Spectrom. 14:434 (1979)CrossRefGoogle Scholar
  21. 21.
    Gal, J.-F., Geribaldi, S., Pfister-Guillouzo, G., and Morris, D. G., Basicity of the carbonyl group. Part 12. Correlation between Ionization Potentials and Lewis Basicities in Aromatic Carbonyl Compounds, J. Chem. Soc. Perkin Trans. II:103 (1985)CrossRefGoogle Scholar
  22. 22.
    McLoughlin, R. G., Morrison, J. D., and Traeger, J. C., Org. Mass Spectrom. 14:104(1979)CrossRefGoogle Scholar
  23. 23.
    Koizumi, H., Lacmann, K., and Schmidt, W. F., VUV light-Induced Electron Emission from Organic Liquids, J. Electron Spectrosc. Relat. Phenom. (accepted for publication)Google Scholar
  24. 24.
    Pireaux, J. J., and Caudano, R., X-ray photoemission study of core-electron relaxation energies and valence-band formation of the linear alkanes. II. Solid-phase measurements, Phys. Rev. B 15:2242 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    Born, M., Z. Physik 1:45 (1920)ADSCrossRefGoogle Scholar
  26. 26.
    Morgner, H., Oberbrodhage, J., Richter, K., and Roth, K., The gas-liquid phase transition shift at surfaces: experimental method and interpretation, J. Electron Spectrosc. Rel. Phenom. 57:61 (1991)CrossRefGoogle Scholar
  27. 27.
    Böttcher, E. H., and Schmidt, W. F., Photoconductivity of nonpolar liquids induced by vacuum-ultraviolet light, J. Chem. Phys. 80:1353 (1984)ADSCrossRefGoogle Scholar
  28. 28.
    Spicer, W. E., Optical Density of States Ultraviolet Photoelectric Spectroscopy, J. Res. Nat. Bur. Stand. 74A:397 (1970)CrossRefGoogle Scholar
  29. 29.
    Sowers, B. L., Williams, M. W., Hamm, R. N., and Arakawa, E. T., Optical properties of some silicone diffusion-pump oils in the vacuum ultraviolet using a closed-cell technique, J. Appl. Phys. 42:4252 (1971)ADSCrossRefGoogle Scholar
  30. 30.
    Schmidt, W. F., and Holroyd, R. A., Ion Mobilities and Yields in X-irradiated Polymethylsiloxane Oils, Radiat. Phys. Chem. 39:349 (1992)Google Scholar
  31. 31.
    Baron, P. L., Casanovas, J., Guelfucci, J. P., and Hoi, R. L S., Photoconductivity Induced By VUV Photons In Polydimethylsiloxane and Polymethylphenylsiloxane Oils, IEEE Trans. Electr. Insul. 23:563 (1988)CrossRefGoogle Scholar
  32. 32.
    Koizumi, H., (to be published)Google Scholar
  33. 33.
    Koizumi, H., Lacmann, K., and Schmidt, W. F., Light-induced emission from low vapor pressure organic liquids, Nucl. Instr. and Meth. A327:75 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Klaus Lacmann
    • 1
  • Hitoshi Koizumi
    • 1
  • Werner F. Schmidt
    • 1
  1. 1.Hahn-Meitner-InstitutAbteilung StrahlenchemieBerlinGermany

Personalised recommendations