Photoinduced Dissociative Electron Capture Processes in Binary Ion-Molecule Complexes

  • Donna M. Cyr
  • Mark A. Johnson
Part of the NATO ASI Series book series (NSSB, volume 326)


Molecular negative ions are distinct from their neutral counter parts in that while their ground electronic states can be quite stable, their first excited electronic states often correspond to the electron detachment continuum, with the lowest valence excited states embedded in the continuum.1,2 Thus, the absence of the long range coulomb attraction between the excess electron and the neutral core often completely eliminates the infinite number of bound Rydberg states present in all neutral molecules near their ionization potentials. There are, however, a few recently discovered cases in which the dipole moment of a neutral molecule is sufficiently large that the electrostatic (i.e. charge-dipole) interaction with the excess electron is sufficient to create an additional bound electronic state just below the continuum.3 Water dimer anion, (H2O)2’ -4 presents a spectacular case in which a dipole bound state actually forms the ground state since all the valence states are unstable with respect to autodetachment.


Photoelectron Spectrum Charge Transfer Band Binary Complex Iodine Atom Neutral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Massey. “Negative Ions,” Cambridge University Press, Cambridge (1976)Google Scholar
  2. 2.
    P.S. Drzaic, J. Marks, and J.I. Brauman, Electron Photodetachment from Gas Phase Molecular Anions in: “Gas Phase Ion Chemistry Vol. 3,” M.T. Bowers, ed., Academic Press, New York (1984)Google Scholar
  3. 3.
    R.D. Mead, A.E. Stevens, and W.C. Lineberger, Photodetachment in Negative Ion Beams in: “Gas Phase Ion Chemistry Vol. 3,” M.T. Bowers, ed., Academic Press, New York (1984)Google Scholar
  4. 4.
    H. Haberland, C. Ludenidgt, H.-G. Schindler, and D.R. Worsnop, Experimental Observation of Negatively Charged Water Dimer and Other Small (H2O)n Clusters, J. Chem. Phys. 81:3742 (1984)ADSCrossRefGoogle Scholar
  5. 5.
    R.L. Fulton, and M. Gouterman, Vibronic Coupling. I. Mathematical Treatment of Two Electronic States, J. Chem. Phys 35:1059 (1961)ADSCrossRefGoogle Scholar
  6. 6.
    G.P. Smith, P.C. Crosby, and J.T. Moseley, Photodissociation of Atmospheric Positive Ions I. 5300–6700 Ǻ, J. Chem. Phys. 67:3818 (1977) ADSCrossRefGoogle Scholar
  7. 7.
    F. Misaizu, H. Shinohara, N. Nishi, T. Kondow, and M. Kinoshita, Two-Color 2+2 Photon Resonance Enhanced Ionization of Benzene-Carbon Tetrachloride Binary Clusters, Int. J. Mass Spec. Ion Proc. 102:99 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    S.B. Peipho, E.R. Krausz, and P.N. Schatz, Vibronic Coupling Model for Calculation of Mixed Valence Absorption Profiles, J. Am. Chem. Soc 100:2996 (1978)CrossRefGoogle Scholar
  9. 9.
    M.A. Johnson, and W.C. Lineberger, Pulsed Methods for Cluster Ion Spectroscopy in: “Techniques for the Study of Ion Molecule Reactions,” J.M. Farrar, and W. Saunders, Jr., eds., John Wiley & Sons, Inc. (1988)Google Scholar
  10. 10.
    L.A. Posey, and M.A. Johnson, Pulsed Photoelectron Spectroscopy of Negative Cluster Ions: Isolation of Three Distinguishable Forms of N2O2 J. Chem. Phys 88:5383 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    T. Dresch, H. Kramer, Y. Thurner, R. Weber, Photodissociation of Sulfur Dioxide Cluster Anions, Z. Phys. D.: At. Mol. Clust. 18:391 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    P.B. Comita, and J.I. Brauman, Electronic Structure of Electron Transfer Intermediates. Photodissociation Spectroscopy of the Negative Ion Dimer of Toluquinone, J. Am. Chem. Soc 109:7591 (1987)CrossRefGoogle Scholar
  13. 13.
    M.F. Jarrold, L. Misev, and M.T. Bowers, Charge Transfer Half Collisions: Photodissociation of the Kr O2 + Cluster Ion with Resolution of the O2 Product Vibrational States, J. Chem. Phys. 81:4369 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    MJ. DeLuca, Solvent Induced Effects in Small Homogeneous Cluster Ions Systems, Ph.D. Thesis, Yale University, 1990Google Scholar
  15. 15.
    S.H. Alajajian, M.T. Bernius, and A. Chutjian, Electron Attachment Lineshapes, Cross Sections and Rate Constants at Ultra-Low Energies in Several Halomethyl and Haloethyl Molecules, J. Phys. B.: At. Mol. Opt. Phys 21:4021 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    P.J. Campagnola, L.A. Posey, and M.A. Johnson, Controlling the Internal Energy Content of Size-Selected Cluster Ions: An Experimental Comparison of the Metastable Decay Rate and Photofragmentation methods of Quantifying the Internal Excitation of (H2O)n J. Chem. Phys. 95:7998 (1991)CrossRefGoogle Scholar
  17. 17.
    L.A. Posey, M.J. DeLuca, and M.A. Johnson, Demonstration of a Pulsed Photoelectron Spectrometer on Mass-Selected Negative Ions: O, O2 and O4 Chem Phys. Lett 131:170 (1986)ADSCrossRefGoogle Scholar
  18. 18.
    S.S. Shaik, H.B. Schegel, and S. Wolfe. “Theoretical Aspects of Physical Organic Chemistry: the SN2 Mechanism,” Wiley-Interscience, New York (1992)Google Scholar
  19. 19.
    S.C. Tucker, and D.G. Truhlar, Ab Initio Calculation of the Transition State Geometry and Vibrational Frequencies of the SN2 Reaction of Cl with CH3CI, J. Phys. Chem. 93:8138 (1989)CrossRefGoogle Scholar
  20. 20.
    K. Hirao, and P. Kebarle, SN2 Reactions in the Gas Phase. Transition States for the Reaction: Cl + RBr →CIR + Br, where R = CH3, C2H55, and iso-C3H77 from Ab Initio Calculation and Comparison with Experiment. Solvent Effects, Can. J. Chem 67:1261 (1989)CrossRefGoogle Scholar
  21. 21.
    S.R. Vande Linde and W.L. Hase, Complete Multidimensional Analytic Potential Energy Surface for Cl + CH3C1 SN2 Nucleophilic Substitution, J. Phys. Chem. 94:2778 (1990)CrossRefGoogle Scholar
  22. 22.
    R.G. Cooks. “Collision Spectroscopy,” Plenum Press, New York (1978)CrossRefGoogle Scholar
  23. 23.
    D.M. Cyr, L.A. Posey, G.A. Bishea, C.-C. Han, and M.A. Johnson, Collisional Activation of Captured Intermediates in the Gas-Phase SN2 Reaction Cl + CH3Br → Br + CH3Cl, J. Am. Chem. Soc. 113:9697 (1991). Collisional Activation of the entrance channel complexes can drive the SN2 reactionCrossRefGoogle Scholar
  24. 24.
    D.M. Cyr, M.G. Scarton, and M.A. Johnson, Photoelectron Spectroscopy of the Gas-Phase SN2 Reaction Intermediates I- CH3I and I- CD3I: Distortion of the CH3I at the ‘Ion-Dipole’ Complex, J. Chem. Phys. accepted July 1993Google Scholar
  25. 25.
    C.E. Moore. “Atomic Energy Levels, Vol. III,” National Bureau of Standards, Washington, D.C. (1958)Google Scholar
  26. 26.
    R.C. Dougherty, and J.D. Roberts, SN2 Reaction in the Gas Phase: Nucleophilicity Effects, Org. Mass Spec. 8:81 (1974)CrossRefGoogle Scholar
  27. 27.
    W.N. Olmstead, and J.I. Brauman, Gas-Phase Nucleophilic Displacement Reactions, J. Am. Chem. Soc. 99:4219 (1977)CrossRefGoogle Scholar
  28. 28.
    D.W. Arnold, S.E. Bradforth, E.H. Kim, and D.M. Neumark, Anionic Photoelectron Spectroscopy of Iodine-Carbon Dioxide Clusters, J. Chem. Phys. 97:9268 (1992)Google Scholar
  29. 29.
    A Franck-Condon analysis of the photoelectron spectra was performed with a program (PESCAL) written by K.M. Ervin using the methods described in: K.M. Ervin, J. Ho, and W.C. Lineberger, Ultraviolet Photoelectron Spectrum of NO; J. Phys. Chem 92:5405 (1988)Google Scholar
  30. 30.
    W.T. King, I.M. Mills, and B. Crawford, Normal Coordinates in Methyl Halides, J. Chem. Phys 27:455 (1957)ADSCrossRefGoogle Scholar
  31. 31.
    W.A. Chupka, A.M. Woodward, and S.D. Colson, Electron Photodetachment from transient negative ions in the multiphoton ionization of CH3I, J. Chem. Phys. 82:4880 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    L.G. Christophorou. “Electron-Molecule Interactions and Their Applications,” Academic Press, Orlando, Fla. (1984)Google Scholar
  33. 33.
    H. Dispert, and K. Lacmann, Negative Ion Formation in Collisions Between Potassium and Fluoro- and Chloromethanes: Electron Affinities and Bond Dissociation Energies, Int. J. Mass Spec, and I. Phys 28:49 (1978)CrossRefGoogle Scholar
  34. 34.
    D.M. Cyr, G.A. Bishea, M.G. Scarton, and M.A. Johnson, Observation of Charge-Transfer Excited States in the I CH3I, I CH3Br, and I CH2Br2 SN2 Reaction Intermediates Using Photofragmentation and Photoelectron Spectroscopy, J. Chem. Phys. 97:5911 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    D.M. Cyr, G.A. Bishea, C.-C. Han, L.A. Posey, M.A. Johnson, Photoinduced Intra-Cluster Electron Transfer Reaction of Captured Intermediates in Gas Phase SN2 Reactions, in: “SPIE Proceedings- Optical Methods for Time- and State-Resolved Chemistry,” Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington (1992)Google Scholar
  36. 36.
    D. Spence, and GJ. Schulz, Temperature Dependence of Electron Attachment at Low Energies for Polyatomic Molecules, J. Chem. Phys 58:1800 (1973)ADSCrossRefGoogle Scholar
  37. 37.
    RP. Blaustein, and L.G. Christophorou, Electron Attachment to Halogenated Aliphatic Hydrocarbons, J. Chem. Phys 49:1526 (1968)ADSCrossRefGoogle Scholar
  38. 38.
    D. Irme, L. Kinsey, A. Sinha, and J. Krenos, Chemical Dynamics Studied by Emission Spectroscopy of Dissociating Molecules J. Phys. Chem. 88:3956 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Donna M. Cyr
    • 1
  • Mark A. Johnson
    • 1
  1. 1.Department of Chemistry, Sterling Chemistry LaboratoryYale UniversityNew HavenUSA

Personalised recommendations