Skip to main content

Electron Scattering in Dense Gases and Liquids and Related Phenomena

  • Chapter
  • 259 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 326))

Abstract

In diluted gases interaction of excess electron with atoms and molecules can be described as a sequence of independent acts of pair scattering. The scattering effect is determined entirely by the cross-section of atom or molecule which knows nothing about the existence of other scatterers. With the density increase this conception losses gradually its validity. Finally in liquid electron interacts at the same time with a number atoms. which are correlated strongly. Moreover electron may loss its high mobility and be captured by density fluctuations. Underline. we consider slow thermal electrons which are in the most degree sensitive to density effects. The goal of theory is to describe not only the electron state in liquid but the gradual changes in its state with the density growth beginning from gas. The peculiarities of electron scattering are clearly displayed in such important observable characteristics as electron mobility in electric field and energy barrier. Hence theory must obtain density dependencies of energy spectrum and mobility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. F. O’Malley, Extrapolation of electron-rare gas atom cross sections to zero energy. Phys. Rev. 163: 1020 (1963).

    Article  MathSciNet  Google Scholar 

  2. B. E. Springett, J. Jortner, and M. H. Cohen, Excess electron in nonpolar fluid, J. Chem. Phys. 48: 2720 (1968).

    Article  ADS  Google Scholar 

  3. M. H. Cohen and J. Lekner, Theory of hot electrons in gases, liquids, and solids, Phys. Rev. 158: 305(1967).

    Article  ADS  Google Scholar 

  4. J. Lekner, Motion of electrons in liquid argon, Phys. Rev. 158: 130 (1967).

    Article  ADS  Google Scholar 

  5. K. Huang. “Statistical Mechanics”. Wiley. New York (1963).

    Google Scholar 

  6. V. M. Atrazhev and I. T. Iakubov, Electron mobility in liquids and dense gases. High Temperatures 18: 966 (1981).

    Google Scholar 

  7. K. W. Schwarz, Charge-carrier mobilities liquid helium. Phys. Rev. A6: 2510 (1972).

    ADS  Google Scholar 

  8. A. Bartels, Pressure dependence of electron drift velocity in H2 at 77.8 K, Phys. Rev. Lett. 28: 213 (1972).

    Article  ADS  Google Scholar 

  9. A. Bartels, Density dependence of electron drift velocities in He and H2 at 77.6 K. Appl. Phys. 8: 59(1975).

    Article  ADS  Google Scholar 

  10. A. Bartels, Density dependence of electron drift velocity in argon. Phys. Lett. 44: 403 (1973).

    Article  Google Scholar 

  11. A. G. Khrapak and I. T. Iakubov. “Electrons in Dense Gases and Plasmas.” Nauka. Moscow (1981).

    Google Scholar 

  12. J. A. Jahnke, L. Meyer, and S. Rice, Zero-field mobility of excess electron in fluid argon, Phys. Rev. A3: 734 (1971).

    Article  ADS  Google Scholar 

  13. F. M. Jacobsen, N. Gee. and G. R. Freeman, Electron mobility in liquid krypton. Phys. Rev. A34: 2329(1986).

    Article  ADS  Google Scholar 

  14. S. S. -S. Huang and G. R. Freeman, Electron mobilities in gaseous, liquid and solid Xe, J. Chem. Phys. 68: 1355 (1978).

    Article  ADS  Google Scholar 

  15. R. A. Holroyd and N. E. Cipollini, Correspondence of conduction band minima and mobility maxima in dielectric liquids, J. Chem. Phys. 69: 501(1978).

    Article  ADS  Google Scholar 

  16. D. L. McCorcle, L. G. Christophorou, D. V. Maaxey, and J. G. Carter, Ramsauer-Townsend minimum in cross sections of me thane, propane, butane, and neopentane, J. Phys. B11: 3067 (1978).

    ADS  Google Scholar 

  17. W. Tauchert and W. F. Schmidt, Energy of quasi-free electron in liquid Ar, Kr, Xe, Z. Natur forsch. 30a: 1085 (1975).

    ADS  Google Scholar 

  18. W. Zdrojewski von, J. G. Rabe, and W. F. Schmidt, Photoelectric determination of V0 - values in solid rare gases, Z. Naturforsch. 35a: 672 (1980).

    ADS  Google Scholar 

  19. A. O. Allen and W. F. Schmidt, Determination of energy level of electrons in liquid argon over a range of densities, Z. Naturforsch. 37a: 316 (1982).

    ADS  Google Scholar 

  20. R. Reininger, U. Asaf, and I. T. Steinberger, Density dependence of quasi-free electron state in fluid Xe and Kr, Chem. Phys. Lett. 90: 287 (1982).

    Article  ADS  Google Scholar 

  21. R. Reininger, U. Asaf, I. T. Steinberger, and S. Basak, Relationship between energy of quasi-free-electron and its mobility, Phys. Rev. 288: 2426 (1983).

    Google Scholar 

  22. S. Basak and M. H. Cohen, Deformation-potential theory for mobility of excess electron in liquid argon, Phys. Rev. B20: 3404 (1979).

    Article  ADS  Google Scholar 

  23. G. Ascarelly, Calculation of mobility of electron injected in liquid argon, Phys. Rev. B33: 5825 (1986).

    Article  ADS  Google Scholar 

  24. B. Bolties, C. de Graaf and S. W. de Leeuw, Computation of energy V0 of excess electron in dense helium and argon, J. Ghent. Phys. 98: 275(1993). B. Bolties, PhD Thesis, 1992.

    Google Scholar 

  25. V. M. Atrazhev and I. T. Iakubov, Thermal electrons in liquids with high polarizabilities, submitted to J. Phys..

    Google Scholar 

  26. L. D. Landau and E. M. Lifshits. “Quantum Mechanics,” Pergamon, Oxford (1965).

    Google Scholar 

  27. J. Baird, Continuum dielectric model for electron in non polar fluids, Phys. Rev. A32: 1235 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Lekner, Mobility maximum in rare-gas liquids, Phys. Lett. A27: 341 (1968).

    Article  ADS  Google Scholar 

  29. L. L. Tankersley, Energy barrier for electron penetration into helium, J. Low-Temp. Fhys. 11: 451 (1973).

    Article  ADS  Google Scholar 

  30. K. Nakagawa, K. Itoh, and M. Nishikawa, Effect of molecular structure on density dependence of electron mobility and conduction band energy, IEEE Trans. Elect. Insul. 23: 509(1988).

    Google Scholar 

  31. Laporte P., Subtil J. L., R. Reininger, Saule V., Bernstorff S., and I. T. Steinberger, Evolution of intermediate exitons in fluid Ar and Kr, Phys. Rev. B35: 6270 (1987).

    Google Scholar 

  32. A. A. Jahnke, N. A. W. Holzwart, and S. A. Rice, Comments on theory of electron mobility in simple fluids, Phys. Rev. A5: 463 (1972).

    Article  ADS  Google Scholar 

  33. B. Plenkievicz, P. Plenkievicz, and J. -P. Jay-Gerin, Calculation of effective mass of electron in rare-gas liquids, in “10th Intern. Conf. Conduction and Breakdown in Dielectric Liquds,” Eds P. Atten and R. Tobazeon, CNRS, Grenoble (1990).

    Google Scholar 

  34. H. Nakanishi and D. M. Schrader, Simple but accurate calculations on scattering of electrons and positrons from Ne and Ar, Phys. Rev. A34: 1823(1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iakubov, I.T. (1994). Electron Scattering in Dense Gases and Liquids and Related Phenomena. In: Christophorou, L.G., Illenberger, E., Schmidt, W.F. (eds) Linking the Gaseous and Condensed Phases of Matter. NATO ASI Series, vol 326. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2540-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2540-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6083-4

  • Online ISBN: 978-1-4615-2540-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics