Exploring Potential Surface Landscapes and How they Govern Dynamics

  • R. Stephen Berry
Part of the NATO ASI Series book series (NSSB, volume 326)


The subject of multidimensional potential surfaces and the dynamics on those surfaces was just reviewed by this writer 1, and the closely related topic of the analytic representation of potential surfaces, largely of small systems, had been reviewed shortly before by Schatz2. Consequently we will here very tersely review some of the fundamentals, briefly survey aspects of the subject treated in those reviews and discuss some aspects not covered in those reviews.


Potential Energy Surface Potential Surface Alkali Halide Nuclear Motion Effective Potential Energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. S. Berry, Potential Surfaces and Dynamics: What Clusters Tell Us, Chem. Revs, (in press): (1993).Google Scholar
  2. 2.
    G. C. Schatz, The analytic representation of electronic potential energy surfaces, Revs. Mod. Phys. 61: 669 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    B. Sutcliffe, The coupling of nuclear and electronic motions in molecules, J. Chem. Soc. Faraday Trans. 89: 2321 (1993).CrossRefGoogle Scholar
  4. 4.
    J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley and A. J. C. Varandas. “Molecular Potential Energy Functions,” Wiley, New York (1984).Google Scholar
  5. 5.
    D. M. Hirst. “Potential Energy Surfaces,” Taylor and Francis, London (1985).Google Scholar
  6. 6.
    T. H. Dunning Jr. and L. B. Harding, in: “Theory of Chemical Reaction Dynamics,” M. Baer. ed., CRC Press, Boca Raton, Florida (1985).Google Scholar
  7. 7.
    J. E. Lennard-Jones, Proc. Roy. Soc. A. 106: 463 (1924).ADSCrossRefGoogle Scholar
  8. 8.
    R. A. Aziz and H. H. Chen, J. Chem. Phys. 67: 5719 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Aziz, Molec. Phys. 38: 177 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Aziz and M. J. Slaman, The argon and krypton interatomic potentials revisited, Mol. Phys. 58: 679 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    R. A. Aziz, A highly accurate interatomic potential for argon, J. Chem. Phys. 99: 4518 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids. 25: 45 (1964).ADSCrossRefGoogle Scholar
  13. 13.
    D. O. Welch, O. W. Lazareth, G. J. Dienes and R. D. Hatcher, Alkali halide molecules: configurations and characteristics of dimers and trimers, J. Chem. Phys. 64: 835 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    D. O. Welch, O. W. Lazareth, G. J. Dienes and R. D. Hatcher, Clusters of alkali halide molecules, J. Chem. Phys. 68: 2159 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    R. S. Berry, Optical Spectra of the Alkali Halide Molecules, in: “Alkali Halide Vapors,” P. Davidovits and D. L. McFadden. ed., Academic Press, New York (1979).Google Scholar
  16. 16.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. “Numerical Recipes,” Cambridge University Press, Cambridge (1986).Google Scholar
  17. 17.
    J. W. Mclver Jr. and A. Komornicki, Structure of Transition States in Organic Reactions. General Theory and an Application to the Cyclobutene-Butadiene Isomerization Using a Semiempirical Molecular Orbital Method, J. Am. Chem. Soc. 94: 2625 (1972).CrossRefGoogle Scholar
  18. 18.
    A. Komornicki and J. W. McIver Jr., J. Am. Chem. Soc. 95: 4512 (1973).CrossRefGoogle Scholar
  19. 19.
    A. Komornicki and J. W. McIver Jr., Structure of Transition States. III. A MINDO/2 Study of the Cyclization of 1, 3, 5-Hexatriene to 1, 3-Cyclohexadiene, J. Am. Chem. Soc. 96: 5798 (1974).CrossRefGoogle Scholar
  20. 20.
    J. W. Mclver, The Structure of Transition States: Are They Symmetric?, Acc. Chem. Res. 7: 72 (1974).CrossRefGoogle Scholar
  21. 21.
    J. Pancik, Calculation of the Least Energy Path on the Energy Hypersurface, Coll. Czech. Chem. Comm. 40: 1112 (1975).CrossRefGoogle Scholar
  22. 22.
    H. Poppinger, On the Calculation of Transition States, Chem. Phys. Lett. 35: 550 (1975).ADSCrossRefGoogle Scholar
  23. 23.
    T. A. Halgren and W. N. Lipscomb, The Synchronous Transit Method for Determining Reaction Pathways and Locating Molecular Transition States, Chem. Phys. Lett. 49: 225 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    P. G. Mezey, M. R. Peterson and I. G. Csizmadia, Transition state determination by the X-method, Can. J. Chem. 55: 2941 (1977).CrossRefGoogle Scholar
  25. 25.
    K. Müller and L. D. Brown, Location of Saddle Points and Minimum Energy Paths by a Constrained Simplex Optimization Procedure, Theor. Chim. Acta (Berl.). 53: 75 (1979).CrossRefGoogle Scholar
  26. 26.
    W. H. Miller, N. C. Handy and J. E. Adams, Reaction path Hamiltonian for polyatomic molecules, J. Chem. Phys. 72: 99 (1980).ADSCrossRefGoogle Scholar
  27. 27.
    C. J. Cerjan and W. H. Miller, On finding transition states, J. Chem. Phys. 75: 2800 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    D. O’Neal, H. Taylor and J. Simons, Potential Surface Walking and Reaction Paths for C2vBe + H2<- BeH2-> Be + 2H (1A1), J. Phys. Chem. 88: 1510 (1984).CrossRefGoogle Scholar
  29. 29.
    J. Simons, P. Jørgenson, H. Taylor and J. Ozment, Walking on Potential Energy Surfaces, J. Phys. Chem. 87: 2745 (1983).CrossRefGoogle Scholar
  30. 30.
    J. Baker, An Algorithm for the Location of Transition States, J. Comp. Chem. 7: 385 (1986).CrossRefGoogle Scholar
  31. 31.
    R. S. Berry, H. L. Davis and T. L. Beck, Finding saddles on multidimensional potential surfaces, Chem. Phys. Lett. 147: 13 (1988).ADSCrossRefGoogle Scholar
  32. 32.
    R. S. Berry, How We and Molecules Explore Molecular Landscapes, in: “Mode Selective Chemistry,” J. Jortner, A. Pullman and B. Pullman, ed., Kluwer Academic Publishers, Amsterdam (1991).Google Scholar
  33. 33.
    D. J. Wales, Transition States for Ar55, Chem. Phys. Lett. 166: 419 (1990).ADSCrossRefGoogle Scholar
  34. 34.
    D. J. Wales, Locating Stationary Points for Clusters in Cartesian Coordinates, J. Chem. Soc. Faraday Trans. 89: 1305 (1993).CrossRefGoogle Scholar
  35. 35.
    J. Rose and R. S. Berry, Towards elucidating the interplay of structure and dynamics in clusters: Small KC1 clusters as models, J. Chem. Phys. 96: 517 (1992).ADSCrossRefGoogle Scholar
  36. 36.
    R. S. Berry, “Atomic Clusters: Laboratories for Studying Chaos and Ergodicity,” in Proc. Adriatico Research Conference “Mesoscopic Systems and Chaos, a Novel Approach,”, Trieste, 1993, H. Cerdiera and G. Casati, ed., World Scientific, Singapore (1994).Google Scholar
  37. 37.
    J. Rose and R. S. Berry, (KC1)32 and the possibilities for glassy clusters, J. Chem. Phys. 98: 3262 (1993).ADSCrossRefGoogle Scholar
  38. 38.
    J. P. Rose and R. S. Berry, Freezing, Melting, Nonwetting and Coexistence in (KC1)32, J. Chem. Phys. 98: 3246 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. Stephen Berry
    • 1
  1. 1.Department of Chemistry and The James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations