Advertisement

Computer - Based Image Analysis for Histochemistry

  • Gustav Bernroider

Abstract

A large variety of imaging methods has been developed to address the location and quantification of signals emerging from a place coded distribution of biological activity. The key question addressed by all such techniques is the extraction of cellular or molecular attributes from image coded information. This requires multiple calibration steps that gradually associate biological attributes with images. In the following text, major requirements or calibration steps that must be met to infer physico-chemical aspects from the space-coded intensity distribution provided by images are outlined. Also included is a comparison between traditional transmission images from radiographic receptor binding and novel approaches using intrinsic emission tomographs from enzyme-labeled ligands. Another major point is that computer-assisted manipulations of images allow the construction of “coincident images” that can combine such diverse signals as low light emissions with high-level light transmission images. Demonstrative examples from neuro-imaging show that coincident images can provide multiple histochemical information in a global, yet spatially selective way.

Keywords

Light Emission Optical Density Physical Section Receptor Autoradiography Channel Electron Multiply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.W. Toga, “Three-Dimensional Neuroimaging,” Raven Press, New York (1990)Google Scholar
  2. 2.
    G. M. Shepherd, “The Synaptic Organization of the Brain” (3rd Ed.), Oxford Univ Press (1990)Google Scholar
  3. 3.
    A. Gibbons, Data basing the brain, Science 258:1872 (1992)CrossRefPubMedGoogle Scholar
  4. 4.
    A.W. Toga, Three-dimensional reconstruction, in: “Three-Dimensional Neuroimaging”, A.W. Toga, ed., Raven Press (1990)Google Scholar
  5. 5.
    R.C. Collins, E.M. Santori, and A.W. Toga, A three-dimensional image of brain function, in: “Three-Dimensional Neuroimaging”, A.W. Toga, ed., Raven Press, 149–164 (1990)Google Scholar
  6. 6.
    G. Bernroider and A. Pinz (eds), “Image Acquisition and Real-Time Visualization,” OCG Publ 56, R. Oldenburg, Vienna (1990)Google Scholar
  7. 7.
    H. Kume, H. Nakamura, and M. Suzuki, Gatable photonic detectors and it’s image processing, in: “Proc 19th Int Congress on High Speed Photography & Photonics”, 16-21 Sept. Cambridge, U.K. (199Google Scholar
  8. 8.
    R.C. Graham and M.J. Karnovsky, The early stages of absorption of injected horseradish peroxidase in the proximal tubule of the mouse kidney; ultrastructural cytochemistry by a new technique, JHistochem Cytochem 14:291 (1966)CrossRefGoogle Scholar
  9. 9.
    A. Grinvald, R.D. Frostig, E. Lieke, and R. Hildesheim, Optical imaging of neuronal activity, Physiol Rev 68:1285 (1988)PubMedGoogle Scholar
  10. 10.
    G.E. Duncan and W. Stumpf, Brain activity patterns: assessment by high resolution autoradiographic imaging of radiolabeled 2-deoxyglucose and glucose uptake, Prog Neurobiol 34:365 (1991)CrossRefGoogle Scholar
  11. 11.
    B. Chance, P. Cohen, F. Jobsis, and B. Schoener, Intracellular oxidation-reduction states in vivo, Science (Washington), 137:499 (1962)CrossRefGoogle Scholar
  12. 12.
    M.M. Haglund, G.A. Ojemann, and D.W. Hochman, Optical imaging of epileptiform and functional activity in human cerebral cortex, Nature 358:668 (1992)CrossRefPubMedGoogle Scholar
  13. 13.
    G.T. Reynolds, Application of photosensitive devices to bioluminescence studies, Photochem Photobiol 27:405 (1978)CrossRefGoogle Scholar
  14. 14.
    C.E. Hooper and R.E. Ansorge, Quantitative photon images in the life sciences using intensified CCD cameras, in: “Bioluminescence and Chemoluminescence, Current Status”, P.E. Stanley and L.J. Kricka, eds. 337–344, John Wiley & Sons, Chichester (1991)Google Scholar
  15. 15.
    J.W. Goodman, “Introduction to Fourier Optics,” McGraw Hill, New York (1968)Google Scholar
  16. 16.
    G. Bernroider and K. Überriegler, The simulation of photon images from objects with very low light emissions, in: “Image Acquisition and Real Time Visualization”, G. Bernroider and A. Pinz, eds. OCG Publ. 56, Oldenbourg, Vienna (1990)Google Scholar
  17. 17.
    G. Bernroider, The foundation of computational geometry, theory and application of the point-lattice concept within modern structure analysis. Lecture Notes in Biomathematics, 23:153 (1978)CrossRefGoogle Scholar
  18. 18.
    G. Mahoney, D.E. Hillman, and M. Canaday, High-resolution, large area image recording and analysis, in: “Three-Dimensional Neuroimaging” A.W. Toga, ed., Raven Press, New York (1990)Google Scholar
  19. 19.
    M.J. Kuhar and J.R. Unnerstall, Receptor autoradiography, in: “Methods in Neurotransmitter Receptor Analysis”, H.I. Yamamura, S.J. Enna and M. J. Kuhar, eds., 177–218, Raven Press, New York (1990)Google Scholar
  20. 20.
    D.B. Bylund and H.I. Yamamura, Methods for receptor binding, in: “Methods in Neurotransmitter Receptor Analysis”, H.I. Yamamura, S.J. Enna and M.J. Kuhar, eds., Raven Press, New york (1990)Google Scholar
  21. 21.
    E. Schramm, Evolution of bioluminescence ATP assays, in: “Bioluminescence and Chemoluminescence, Current Status”, P. E. Stanley and L.J. Kricka, eds., John Wiley & Sons, Chichester (1991)Google Scholar
  22. 22.
    I. Bronstein and P. McGrath, Chemo uminsecence light up, Nature 338:595 (1989)CrossRefGoogle Scholar
  23. 23.
    I. Bronstein and L.J. Kricka, Improved chemoluminescent detection of alkaline phosphatase, BioTechniques 9:No.2 (1990)Google Scholar
  24. 24.
    G.H.G. Thorpe and L.J. Kricka, Enhanced chemoluminescent reactions catalyzed by horse radish peroxide, Methods Enzymol 133:331 (1986)CrossRefPubMedGoogle Scholar
  25. 25.
    I. Bronstein and L.J. Kricka, Instrumentation for luminescent assays, Am Clin Lab Jan (1990)Google Scholar
  26. 26.
    G. Bernroider, M. Holztrattner and P. Hammerl, Imaging receptor binding by luminescence,in: “Proc. VII Int. Symp. on Bioluminescence and Chemoluminescence”, Banff, Alberta (1993)Google Scholar
  27. 27.
    R.E. Ansorge, C.E. Hooper, W.W. Neale and J.G. Rushbrooke, Recent developments in low-light imaging systems, in: “Bioluminescence and Chemoluminescene, Current Status”, P.E. Stanley and L.J. Kricka, eds., J. Wiley & Sons, Chichester (1991)Google Scholar
  28. 28.
    S. Walenta, M. Dellian, A.E. Goetz, G.E.H. Kuhnle,and W. Mueller-Klieser, Pixel to pixel correlation between images of absolute ATP concentrations and blood flow in turn ours, Br J Cancer 66:1099 (1992)CrossRefPubMedGoogle Scholar
  29. 29.
    R.D. Allen and N.S. Allen, Video-enhanced microscopy with a computer frame memory, J Microsc 129:3 (1983)CrossRefPubMedGoogle Scholar
  30. 30.
    V. Wielke, Laser scanning in microscopy, SPIE 396:164 (1983)CrossRefGoogle Scholar
  31. 31.
    M.M. Kersker, A. Buonaquisti, B.A. Weavers, and J.T. Mastovich, Imaging with electron microscopes, Advanced Imaging Feb:46 1990Google Scholar
  32. 32.
    D.E. Hillman, R.R. Llinás, M. Canaday, and G. Mahoney, Concepts and methods of image acquisition, frame processing and image data representations, in: “Three-Dimensional Neuroimaging”, A.W. Toga, ed., Raven Press, New York (1990)Google Scholar
  33. 33.
    L. Levitt, S. Spector, A. Sjoerdsma and S. Udenfriend, Elucidation of the rate limiting step in norepinephrine biosysnthesis in the perfused guinea-pig heart, J Pharmacol Exp Ther 148:1 (1965)PubMedGoogle Scholar
  34. 34.
    D. Lake, Electronic cameras, sensors and electronic exposure control, Advanced Imaging Nov:24 (1990)Google Scholar
  35. 35.
    G. Bernroider, Recognition and classification of structure by means of stereological methods in neurobiology, J Microsc 107:287 (1976)CrossRefPubMedGoogle Scholar
  36. 36.
    G. Bernroider, Lattice, points and probability-the foundation of optical computing and stereology, in: “Special Issues of Pract. Metallography”, J.L. Chermant, ed., Vol. 8 pp 51–60, Dr. Riederer Verl., Stuttgart (1978)Google Scholar
  37. 37.
    G. Bernroider and H. Adam, Synthetized point information sampling, Mikroskopie (Vienna) Spec Suppl 37:119 (1980)Google Scholar
  38. 38.
    E.R. Weibel, “Practical Methods for Biological Morphometry,” Academic Press (1980)Google Scholar
  39. 39.
    E.E. Underwood, “Quantitative Stereology,” Addison Wesley, Reading, MA (1970)Google Scholar
  40. 40.
    D.C. Sterio, The unbiased estimation of number and sizes of arbitrary particles using the disector, J Microsc 134:127 (1984)CrossRefPubMedGoogle Scholar
  41. 41.
    L.M. Cruz-Orive, Particle number can be estimated using a disector of unknown thickness: the selector, J Microsc 145:121 (1987)PubMedGoogle Scholar
  42. 42.
    H. Braendgaard and H.J. Gundersen, The impact of recent stereological advances on quantitative studies of the nervous system, Jn Neurosci Meth 18:39 (1986)CrossRefGoogle Scholar
  43. 43.
    S. Walenta, M. Dellian, A.E. Goetz, G.E.H. Kuhnle, and W. Mueller-Klieser, Pixel to pixel correlation between images of absolute ATP concentrations and blood flow in tumours, Br J Cancer 66:1099 (1992)CrossRefPubMedGoogle Scholar
  44. 44.
    A.P. Schaap, H. Akhavan, L.J. Romano, Chemoluminescent substrates for alkaline phosphatase: applications to ultrasensitive enzyme-linked immunoassays and DNA probes, Clin Chem 35:1863 (1989)PubMedGoogle Scholar
  45. 45.
    F. Crick and E. Jones, Backwardness of human neuroanatomy, Nature 361:109 (1993)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gustav Bernroider
    • 1
  1. 1.Institute of ZoologyUniversity of SalzburgSalzburgAustria

Personalised recommendations