In Situ Hybridization for Peptide mRNA

  • Giorgio Terenghi
  • Julia M. Polak


The introduction of in situ hybridization for mRNA using labelled complementary nucleic acid probes has made possible the understanding of gene expression at the cellular level. Different types of probe have been used for in situ hybridization, including cDNA sequences, synthetic oligonucleotides, and complementary RNA (cRNA) probes. Hybridization can be carried out on sections of fixed tissue as well as on cell culture preparations. The approach to radioactive and non-radioactive in situ hybridization is similar, with some variations in the concentration of the solutions or the timing of different steps. The choice of radiolabel is generally determined by a balance between speed and resolution, and both 32P and 35S are suited for studies of the neuroendocrine system. The use of digoxigenin is recommended when working with non-radioactive probes, as it sometimes gives lower background than biotin. The detection of either non-isotopic reporter molecule can be carried out using a wide range of immunohisto-chemical methods. We have applied in situ hybridization for various studies of regulatory peptides, such as anatomical identification of peptide mRNA, detection of functional changes of peptide synthesis and secretion in different endocrine situations. In situ hybridization can offer a suitable complement or alternative to morphological investigation at light microscopical level by immunohistochemistry.


Dorsal Root Ganglion Vasoactive Intestinal Peptide cRNA Probe Target Nucleic Acid Hematoxylin Counterstaining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Valentino, J.H. Erberwine and J.D. Barchas (eds), In situ hybridization. Applications to neurobiology, Oxford University Press, Oxford (1987)Google Scholar
  2. 2.
    J.M. Polak and J.O.D. McGee (eds), In situ hybridization-Principles and practice, Oxford University Press, Oxford (1990)Google Scholar
  3. 3.
    G. Terenghi and R.A. Fallon, Techniques and applications of in situ hybridization, in: “Current topics in pathology-Pathology of the nucleus”, Underwood JCE (ed), Springer Verlag, Berlin, p.290–337 (1990)Google Scholar
  4. 4.
    D.A. Nielsen and D.J. Shapiro, Insight into hormonal control of messenger RNA stability, Mol Endocrin 4:953–957 (1990)CrossRefGoogle Scholar
  5. 5.
    S.A. Johnson, D.G. Morgan and C.E. Finch, Extensive post-mortem stability of RNA from rat and human brain, J Neurosci Res 16:267–280 (1986)PubMedCrossRefGoogle Scholar
  6. 6.
    J. Sambrook, E.F. Fritsch, and T. Maniatis, Molecular cloning-A laboratory manual. 2nd Edition, Laboratory Press Cold Spring Harbor, (1989)Google Scholar
  7. 7.
    H. Hofler, H. Childers, M.R. Montminy, R.M. Lechan, R.H. Goodman RH and H.J. Wolfe, In situ hybridization methods for the detection of somatostatin mRNA in tissue sections using antisense RNA probes, Histochem J 18:597–604 (1986)CrossRefGoogle Scholar
  8. 8.
    M. Asanuma, N. Ogawa, K. Mizukawa, K. Haba and A. Mori, Comparison of formaldehyde-preperfused frozen and freshly frozen tissue preparation for the in situ hybridization for a tubulin mRNA in the rat brain, Res Comm Chem Pathol Pharmacol 70:183–192 (1990)Google Scholar
  9. 9.
    G. Terenghi, J.M. Polak, Q. Hamid, E. O’Brien, P. Denny, S. Legon, J. Dixon, CD. Minth, S.L. Palay, G. Yasargil and V. Chan-Palay, Localization of neuropeptide Y mRNA in neurons of human cerebral cortex by means of in situ hybridization with complementary RNA probes, Proc Natl Acad Sci USA 84:7315–7318 (1987)PubMedCrossRefGoogle Scholar
  10. 10.
    S.J. Gibson, J.M. Polak, A. Giaid, Q.A. Hamid, S. Kar, P.M. Jones PM, P. Denny, S. Legon, S.G. Amara, R.K. Craig, S.R. Bloom, R.J.A. Penketh, C. Rodek, N.B.N. Ibrahim and A. Dawson, Calcitonin gene-related peptide mRNA is expressed in sensory neurons of the dorsal root ganglia and also in spinal motoneurons in man and rat, Neurosci Lett 91:283–288 (1988)PubMedCrossRefGoogle Scholar
  11. 11.
    G.R. Taylor, G.I. Carter, T.J. Crow, J.A. Johnson, A.F. Fairbairn AF, E.K. Perry and R.H. Perry, Recovery and measurement of specific RNA species from postmortem brain tissue: a general reduction in Alzheimer’s disease detected by molecular hybridization, Exp Mol Pathol 44:111–116(1986)PubMedCrossRefGoogle Scholar
  12. 12.
    A.T. Haase, M. Brahic, and L. Stowring, Detection of viral nucleic acids by in situ hybridization, in: “Methods in virology, VII”, Maramorosch K, Koprowski H (eds), Academic Press, New York, pp 189–226 (1984)Google Scholar
  13. 13.
    H.A. McAllister and D.L. Rock, Comparative usefulness of tissue fixatives for in situ viral nucleicacid hybridization, J Histochem Cytochem 33:1026–1032 (1985)PubMedCrossRefGoogle Scholar
  14. 14.
    T.R. Moench, H.E. Gendelman, J.E. Clements, O. Narayan, and D.E. Griffin, Efficiency of in situ hybridization as a function of probe size and fixation technique, J Virol Methods 11: 119–130 (1985)PubMedCrossRefGoogle Scholar
  15. 15.
    R.H. Singer, J.B. Lawrence, and C. Villnave, Optimization of in situ hybridization using isotopic and non-isotopic detection methods, Biotechniques 4:230–250 (1986)Google Scholar
  16. 16.
    A.F. Guitteny, B. Fouque, C. Mongin, R. Teoule, and B. Boch, Histological detection of mRNA with biotinylated synthetic oligonucleotide probes, J Histochem Cytochem 36:563–571 (1988)PubMedCrossRefGoogle Scholar
  17. 17.
    I. Tournier, D. Bernau, A. Poliard, D. Schoevaret, and G. Fedman, Detection of albumin mRNAs in rat liver by in situ hybridization: usefulness of paraffin embedding and comparison of various fixation procedures, J Histochem Cytochem 35:453–459 (1987)PubMedCrossRefGoogle Scholar
  18. 18.
    DJ. Brigati, D. Myerson, J.J. Leary JJ et al Detection of viral genomes in cultured cells and paraffin-embedded tissue sections using biotin labelled hybridization probes. Virology 126:32–50 (1983)PubMedCrossRefGoogle Scholar
  19. 19.
    J.N. Wilcox, C.E. Gee, and J.L. Roberts, In situ cDNA-mRNA hybridization: development of a technique to measure mRNA levels in individual cells, Methods Enzymol 124:510–533 (1986)PubMedCrossRefGoogle Scholar
  20. 20.
    M. Brahic and A.T. Haase, Detection of viral sequences of low reiteration frequency by in situ hybridization, Proc Natl Acad Sci USA 75:6125–6129 (1978)PubMedCrossRefGoogle Scholar
  21. 21.
    L.M. Angerer and R.C. Angerer, Detection of poly A+ RNA in sea urchin eggs and embryos by quantitative in situ hybridization, Nucleic Acid Res 9:2819–2840 (1981)PubMedCrossRefGoogle Scholar
  22. 22.
    J.B. Lawrence and R.H. Singer, Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acid Res 13:1777–1799 (1985)PubMedCrossRefGoogle Scholar
  23. 23.
    D. Melton, P. Kneg, M. Rabagliati, T. Maniatis, K. Zinn and M.R. Green, Efficient in vitrosynthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter, Nucleic Acid Res 12:7035–7056 (1984)PubMedCrossRefGoogle Scholar
  24. 24.
    R.C. Angerer, K.H. Cox and L.M. Angerer, In situ hybridization to cellular RNAs, Genet Eng 7:43–65 (1985)Google Scholar
  25. 25.
    K.H. Cox, D.V. De Leon, L.M. Angerer and R.C. Angerer, Detection of mRNAs in sea urchinembryos by in situ hybridization using asymmetric RNA probes, Dev Biol 101:485–502 (1984)PubMedCrossRefGoogle Scholar
  26. 26.
    I.D. Young, L. Ailles, K. Deugau, and R. Kisilevsky. Transcription of cRNA forin situ hybridization from polymerase chain reaction-amplified DNA, Lab Invest 64:709–712 (1991)PubMedGoogle Scholar
  27. 27.
    M.H. Canutes, S.L. Beaucage, J.W. Efcavitch, E.F. Fisher, R.A. Goldman, P.L. de Haseth, W. Mandecki, M.D. Matteucci, M.S. Rosendahl and Y. Stabinski, Chemical synthesis and biological studies on mutated gen control regions, Cold Spring Harbor Symp Quant Biol 47: 411–418(1982)Google Scholar
  28. 28.
    M.E. Lewis T.G. Sherman and S.J. Watson In situ hybridization histochemistry with synthetic oligonucleotides; strategies and methods Peptides 6suppl 275–87 1985Google Scholar
  29. 29.
    Y. Kajimura, J. Krull, S. Miyakoshi, K. Itakura and H. Toyoda, Application of long synthetic oligonucleotides for gene analysis: Effect of probe length and stringency conditions on hybridization specificity, GAT A 7:71–79 (1990)Google Scholar
  30. 30.
    W. Brysch, G. Hagendorff and Schlingensiepen, RNA probes transcribed from synthetic DNA for in situ hybridization, Nucleic Acid Res 16:23–33 (1988)CrossRefGoogle Scholar
  31. 31.
    M.A.W. Brady and F.M. Finlan, Radioactive labels: autoradiography and choice of emulsion for in situ hybridization, inIn situ hybridization-Principles and practice”, Polak JM McGee JOD (eds), Oxford University Press pp. 31–58 (1990)Google Scholar
  32. 32.
    A.W. Rogers,Technique of autoradiography, Elsevier, Amsterdam (1979)Google Scholar
  33. 33.
    B. Bhatt, J. Burns, D. Flamery and J.O.D. McGee, Direct visualization of single copy genes on banded metaphase chromosome by non-isotopic in situ hybridization, Nucleic Acid Res 16:3951–3961 (1988)PubMedCrossRefGoogle Scholar
  34. 34.
    J.B. Lawrence, C.A. Villnave and R.H. Singer, Sensitive, high-resolution chromatin and chromosome mapping in situ: presence and orientation of two closely integrated copies of EBV in a lymphoma line, Cell 52:51–61 (1988)PubMedCrossRefGoogle Scholar
  35. 35.
    Y. Furuta, T. Shinohara, K. Sano, M. Meguro and K. Nagashima, In situ hybridization with digoxigenin-labelled DNA probes for detection of viral genomes, J Clin Pathol 43:806–809 (1990)PubMedCrossRefGoogle Scholar
  36. 36.
    S. Podell, W. Maske, E. Ibanez and E. Jablonski, Comparison of solution hybridization efficiencies using alkaline phosphatase-labelled and 32P-labelled oligodeoxynucleotide probes, Mol Cell Probes 5:117–124 (1991)PubMedCrossRefGoogle Scholar
  37. 37.
    E.R. Unger, M.I. Hammer, and M.L. Chenggis, Comparison of 25S and biotin as labels for in situ hybridization: use of an HPV model system, J Histochem Cytochem 39:145–150 (1991)PubMedCrossRefGoogle Scholar
  38. 38.
    M. Zabel and H. Schafer, Localization of calcitonin and calcitonin gene-related peptide mRNA in rat parafollicular cells by hybridocytochemistry, J Histochem Cytochem 36:543–546 (1988)PubMedCrossRefGoogle Scholar
  39. 39.
    L-I. Larsson, T. Christensen, and H. Dalboge, Detection of POMC mRNA by in situ hybridization using biotinylated oligodeoxynucleotide probes and avidin-alkaline phosphatase histochemistry, Histochemistry 89:109–116 (1988)PubMedCrossRefGoogle Scholar
  40. 40.
    A. Giaid, Q. Hamid, C. Adams, D.R. Springall, G. Terenghi and J.M. Polak, Non-isotopic RNA probes. Comparison between different labels and detection systems, Histochemistry 93:191–196 (1989)PubMedCrossRefGoogle Scholar
  41. 41.
    C. Kessler, The digoxigenin anti-digoxigenin (DIG) technology-a survey on the concept and realization of a novel bioanalytical indicator system, Mol Cell Probes 5:161–205 (1991)PubMedCrossRefGoogle Scholar
  42. 42.
    R.G. Morris, M.J. Arends, P.E. Bishop, K. Sizer, E. Duvall, and C.C. Bird, Sensitivity of digoxigenin and biotin labelled probes for detection of human papillomavirus by in situ hybridization, J Clin Pathol 43:800–805 (1990)PubMedCrossRefGoogle Scholar
  43. 43.
    C.S. Herrington, J. Burns, A.K. Graham, B. Bhatt, and McGee, Interphase cytogenetics using biotin and digoxigenin labelled probes. II: simultaneous detection of two nucleic acid species in individual nuclei, J Clin Pathol 42:601–606 (1989)PubMedCrossRefGoogle Scholar
  44. 44.
    B.J. Trask, H. Massa, S. Kenwrick and J. Gitschier, Mapping of human chromosome Xq28 by two colour fluorescence in situ hybridization of DNA sequences to interphase cell nuclei, Am J Hum Genet 48:1–15 (1991)PubMedGoogle Scholar
  45. 45.
    R.W. Dirks, R.P.M. van Gijlswijk, R.H. Tullis, A.B. Smit, J. van Minnen, M. van der Ploeg and A.K. Raap, Simultaneous detection of different mRNA sequences coding for neuropeptide hormones by double in situ hybridization using FITC-and biotin-labelled oligonucleotides, J Histochem Cytochem 38:467–473 (1990)PubMedCrossRefGoogle Scholar
  46. 46.
    C.E. Gee and J.L. Roberts, A technique for the study of gene expression in single cells, DNA 2:157–163 (1983)PubMedCrossRefGoogle Scholar
  47. 47.
    B.D. Shivers, B.S. Schachter and D.W. Pfaff, In situ hybridization for the study of gene expression in the brain, Methods Enzymol 124:497–510 (1986)PubMedCrossRefGoogle Scholar
  48. 48.
    S. Hayashi, I.C. Gillam, A.B. Delaney and G.M. Tener, Acetylation of chromosome squashes of Drosophila melanogaster decreases the background in autoradiography from hybridization with125 I-labelled RNA, J Histochem Cytochem 26:677–679 (1978)PubMedCrossRefGoogle Scholar
  49. 49.
    W-M. Huang, S J. Gibson, P. Facer, J. Gu, and J.M. Polak, Improved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating, Histochemistry 77:275–279 (1983)PubMedCrossRefGoogle Scholar
  50. 50.
    R.J. Britten, D.E. Graham and B.R. Neufeld, Analysis of repeating DNA sequences by reassociation, Method Enzymol 29:363–418 (1974)CrossRefGoogle Scholar
  51. 51.
    C.A. Thomas and B.M. Dancis, Ring stability, J Mol Biol 77:44–55 (1973)Google Scholar
  52. 52.
    D.K. Bodkin and D.L. Knudson, Assessment of sequence relatedness of double stranded RNA genes by RNA-RNA blot hybridization, J Virol Methods 10:45–52 (1985)PubMedCrossRefGoogle Scholar
  53. 53.
    L.M. Angerer, M.H. Stoler and R.C. Angerer, In situ hybridization with RNA probes: an annotated recipe, in: “In situ hybridization. Applications to neurobiology”, Valentino K, Eberwine JH, Barchas JD (eds), Oxford University Press, pp 42–47 (1987)Google Scholar
  54. 54.
    P. Facer, A.E. Bishop, G. Moscoso, G. Terenghi, Y.F. Liu, R.H. Goodman, S. Legon and J.M. Polak, Vasoactive intestinal polypeptide gene expression in the developing human gastrointestinal tract, Gastroenterology 102:47–55 (1992)PubMedGoogle Scholar
  55. 55.
    H.A. Bull, C.B. Bunker, G. Terenghi, D.R. Springall, Y. Zhao, J.M. Polak and P.M. Dowd, Endothelin-1 in human skin: immunolocalization, receptor binding, mRNA expression and effects on cutaneous microvascular endothelial cells, J Invest Dermatol 97:618–623 (1991)PubMedCrossRefGoogle Scholar
  56. 56.
    A. Giaid, S.J. Gibson, N.B.N. Ibrahim, S. Legon, S.R. Bloom, M. Yanagisawa, T. Masaki, I.M. Varndell and J.M. Polak JM, Endothelin-1, an endothelium-derived peptide, is expressed in neurons of the human spinal cord and dorsal root ganglia, Proc Natl Acad Sci USA 86:7634–7638 (1989)PubMedCrossRefGoogle Scholar
  57. 57.
    D.R. Springall, P. Howarth, H. Counihan, R. Djukovic, S. Holgate and J.M. Polak, Endothelin immunoreactivity of airway epithelium in asthmatic patients. The Lancet 337:697–701 (1991)CrossRefGoogle Scholar
  58. 58.
    A. Giaid, Q. Hamid, D.R. Springall, M. Yanagisawa, O. Shinmi, T. Sawamura, T. Masaki, S. Kimura, B. Corrin and J.M. Polak, Detection of endothelin immunoreactivity and mRNA in pulmonary tumours, J Pathol 162:15–22 (1990)PubMedCrossRefGoogle Scholar
  59. 59.
    Q. Hamid, A.E. Bishop, D.R. Springall, C. Adams, A. Giaid, P. Denny, M. Ghatei, S. Legon, F. Cutitta, J. Rode, E. Spindel, S.R. Bloom, and J.M. Polak, Detection of human probombesin mRNA in neuroendocrine (small cell) carcinoma of the lung, Cancer 63:266–271 (1989)PubMedCrossRefGoogle Scholar
  60. 60.
    J. McCafferty, L. Cresswell, C. Alldus, G. Terenghi and R.A. Fallon. A shortened protocol for in situ hybridization to mRNA using radiolabeled RNA probes, Techniques 1:171–182 (1989)Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Giorgio Terenghi
    • 1
  • Julia M. Polak
    • 1
    • 2
  1. 1.Department of HistochemistryRoyal Postgraduate Medical School Hammersmith HospitalLondonUK
  2. 2.Department of HistochemistryRoyal Postgraduate Medical School Hammersmith HospitalLondonUK

Personalised recommendations