The Application of PCR Fingerprinting to the Epidemiologic Analysis of Bacterial and Fungal Pathogens

  • G. Schönian
  • Y. Gräser
  • O. Meusel
  • W. Meyer
  • P. Buchholz
  • W. Presber
  • Th. G. Mitchell
Chapter

Abstract

The increased incidence of nosocomial infections especially in immunocompromised patients has stimulated interest in developing more definite procedures for epidemiological studies of the etiological agents, such as pathogenic strains of different bacterial and fungal species. To determine the origins of infection, the routes of acquisition and transmission as well as the persistence of pathologic strains, precise and reproducible diagnostic methods are required. Recently, Williams et al (1990) and Welsh and McClelland (1990) described a PCR-based method for assessing DNA polymorphisms by amplifying genomic DNA with single primers of arbitrary nucleotide sequence. The use of the PCR with primers differing in length and nucleotide composition detected polymorphisms in the absence of specific sequence information in DNA from bacteria (Jayarao et al 1992), fungi (Crowhurst et al 1991), plants (Wilde et al 1992), animals (Welsh et al 1991) and humans (Williams et al 1990). Polymorphisms generated by this method have been termed arbitrarily primed-polymerase chain reaction (AP-PCR) fingerprinting (Welsh and McClelland 1990), random amplification of polymorphic DNA (RAPD) markers (Williams et al 1990) and DNA amplification fingerprinting (Jayarao et al 1992). The term PCR fingerprinting is used here because single primers, which were originally applied as hybridization probes in conventional DNA fingerprinting to detect minisatellite and microsatellite DNA such as the core sequence of phage M 13 (5’GAGGGTGGCGGTTCT), and the simple repeat sequences (GACA)4 and (GATA)4 (Meyer et al.1991; Ali et al 1986) were used to amplify DNA sequences in the genome of different bacterial and yeast species. Besides, in our experiments primers were tested which were already used in other labs for AP-PCR (universal sequence of M 13; 5’TTATGAAACGACGGCCAGT; Welsh et al 1991) or RAPD (10-mer oligonucleotide; 5’TCACGATGCA; Williams et al).

Keywords

Magnesium Phenol Hydroxide Agarose Bromide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali S, Müller CR and Epplen JT. DNA fingerprinting by oligonucleotide probes specific for simple repeats. Hum. Genet. 1986, 74: 239–243PubMedCrossRefGoogle Scholar
  2. Böttger EC. Frequent contamination of Taq polymerase with DNA. Clin. Chem. 1990, 36: 1258–1259PubMedGoogle Scholar
  3. Buchholz P, Prager R, Tschäpe H, Halle E, Grauel EL and Schmidt G. Serratia marcescens als Ursache eines Ausbruchs von septikämischen Infektionen. Z. KIM. Med. 1990, 45: 2035–2037Google Scholar
  4. Clemons KV, Shankland GS, Richardson MD and Stevens DA. Epidemiologic study by DNA typing of a Candida albicans outbreak in heroin addicts. J. Clin. Microbiol. 1991, 29: 205–207PubMedGoogle Scholar
  5. Crowhurst RN, Hawthorne BT, Rikkerink EHA and Templeton MD. Differentiation of Fusarium solani f. sp. cucurbitae races 1 and 2 by random amplification of polymorphic DNA. Curr. Genet. 1991, 20: 391–396PubMedCrossRefGoogle Scholar
  6. Gräser Y, Klare I, Halle E, Gantenberg R, Buchholz P, Presber W and Schönian G. Epidemiological study of an Acinetobacter baumannii outbreak using PCR fingerprinting.J ClinMicrobiol 1993, 31: 2417–2420Google Scholar
  7. Gruber F. Homologe und heterologe Transformation von Trichoderma reesei mit den Omithin-5’Decarboxylase-Genen als Selektionsmarker. Ph.D. Thesis. TU WienGoogle Scholar
  8. Jayarao BM, Bassam BJ, Caetano-Anolles G, Gresshoff PM and Oliver SP. Subtyping of Streptococcus uberis by DNA amplification fingerprinting. J. Clin. Microbiol. 1992, 30: 1347–1350PubMedGoogle Scholar
  9. Matthews R and Burnie J. Assessment of DNA fingerprinting for rapid identification of outbreaks of systemic candidiasis. Br. Med. J. 1989, 298: 354–357CrossRefGoogle Scholar
  10. Meyer W, Koch A, Niemann C, Beyennann B, Epplen JT and Börner T. Differentiation of species and strains among filamentous fungi by DNA fingerprinting. Curr. Genet. 1991, 19: 239–242PubMedCrossRefGoogle Scholar
  11. Reagan DR, Pfaller MA, Hollis RJ and Wenzel RP. Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe. J. Clin.Microbiol. 1990, 28: 2733–2738PubMedGoogle Scholar
  12. Schmid J, Voss E and Soll DR. Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J. Clin. Microbiol. 1990, 28: 1236–1243PubMedGoogle Scholar
  13. Schönian G, Meusel O, Tietz HJ, Meyer W, Gräser Y, Tausch I, Presber W and Mitchell TG. Identification of clinical Candida albicans by DNA fingerprinting with the polymerase chain reaction. Mycoses 1993, 36: 171–179PubMedCrossRefGoogle Scholar
  14. Stevens DA, Odds FC and Scherer S. Application of DNA typing methods to Candida albicans epidemiology and correlations with phenotype. Rev. Infect. Dis. 1990, 12: 258–266PubMedCrossRefGoogle Scholar
  15. Welsh J and McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990, 18: 7213–7218PubMedCrossRefGoogle Scholar
  16. Welsh J, Petersen C and McClelland M. Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Res. 1991, 19: 303–306PubMedCrossRefGoogle Scholar
  17. Whelan WL, Kirsch DR, Kwon-Chung KJ, Wahl SM and Smith PD. Candida albicans in patients with the acquired immunodeficiency syndrome: absence of a novel or hypervirulent strain. J.Infect. Dis. 1990, 162: 513–518Google Scholar
  18. Wilde J, Waugh R and Powell WA. Genetic fingerprinting of Theobrama clones using randomly amplified polymorphic DNA. Theor. Appl. Genet. 1992, 83: 871–877Google Scholar
  19. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA and Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18: 6531–6535PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • G. Schönian
    • 1
  • Y. Gräser
    • 1
  • O. Meusel
    • 2
  • W. Meyer
    • 3
  • P. Buchholz
    • 1
  • W. Presber
    • 1
  • Th. G. Mitchell
    • 3
  1. 1.Institut für Mikrobiologie und HygieneUniversitätsklinikum Charité der Humboldt-UniversitätBerlinGermany
  2. 2.Zentrum für Zahn-, Mund-und KieferheilkundeUniversitätsklinikum Charité der Humboldt-UniversitätBerlinGermany
  3. 3.Department of MicrobiologyDuke University Medical CenterDurhamUSA

Personalised recommendations