Conductor Selection for SMES Applications

  • O. R. Christianson
  • Y. M. Eyssa
  • X. Huang
  • S. K. Singh
  • R. W. Boom
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 39)


The rationale for selection of a stabilized conductor for large scale superconducting magnetic energy storage applications (SMES) is discussed in this paper. Areas discussed are 1) stability, 2) AC losses, 3) manufacturability, 4) cooldown and warm-up, 5) protection, and 6) reliability for utility applications. It is concluded that a monolithic aluminum stabilized superconductor cooled in a bath of 1.8 K helium is the optimal choice.


Critical Current Normal Zone High Purity Aluminum Eddy Current Loss Superconducting Magnetic Energy Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.W. Boom and H.A. Peterson, Superconductive energy storage for power systems, IEEE Transactions on Magnetics, 8(3): 701–703 (1972).CrossRefGoogle Scholar
  2. 2.
    L. Dresner, D.T. Fehling, M.S. Lubell, J.W. Lue, J.N. Luton, T.J. McManamy, S.S. Shen, and C.T. Wilson, Stability tests of the Westinghouse coil in the International Fusion Superconducting Magnet Test Facility, IEEE Transactions on Magnetics, 24(2): 779–782 (1988).CrossRefGoogle Scholar
  3. 3.
    X. Huang, Low bending rippled structure and frictional energy disturbance analysis for superconductive magnetic energy storage, IEEE Transactions on Magnetics, 27(2): 2312 (1991).CrossRefGoogle Scholar
  4. 4.
    O. Christianson, Normal zone evolution and propagation in cryogenically stable conductors, “Advances in Cryogenic Engineering,” Vol. 31, Plenum Press, New York, (1986), pp. 383–390.CrossRefGoogle Scholar
  5. 5.
    X. Huang and Y M Eyssa, Stability of large current aluminum stabilized conductors, Cryogenics, 32(1): 28 (1992).CrossRefGoogle Scholar
  6. 6.
    X. Huang and Y. M. Eyssa, Stability of large composite superconductors, IEEE Transactions on Magnetics, 27(2): 2304 (1991).CrossRefGoogle Scholar
  7. 7.
    J. Pfotenhauer et al., Test results from the SMES proof of principle experiment, IEEE Transactions on Magnetics, 27(2): 1704 (1991).CrossRefGoogle Scholar
  8. 8.
    X. Huang, New conductor design for superconductive magnetic energy storage systems, IEEE Transactions on Magnetics, 3(1): 242 (1993).Google Scholar
  9. 9.
    L. Bottura, N. Mitchell, and J.V. Minervini, Design criteria for stability in cable-in-conduit conductors, Cryogenics, 31: 510–515 (1991).CrossRefGoogle Scholar
  10. 10.
    J.V. Minervini, M.M. Steeves, J.H. Schultz, D.B. Montgomery, M. Takayasu, and T.A. Painter, Preliminary design of a US. ITER model poloidal coil, “14th IEEE Symposium on Fusion Engineering,” pp. 478–481 (1992).Google Scholar
  11. 11.
    S.W. Van Sciver, Stability of superconductors cooled internally by He II heat transfer, Cryogenics, 31: 516–520(1991).CrossRefGoogle Scholar
  12. 12.
    J. H. Murphy and W. J. Carr, Jr., Eddy current losses in multifilamentary superconductors, Part I, Westinghouse R&D Report, 73-9J2-MACON-P3.Google Scholar
  13. 13.
    T. Kupiszewski and O.R. Christianson, Strand joint losses in superconductors employing monolithic high purity aluminum stabilizers, Session AU CEC/ICMC 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • O. R. Christianson
    • 1
  • Y. M. Eyssa
    • 2
  • X. Huang
    • 3
  • S. K. Singh
    • 1
  • R. W. Boom
    • 4
  1. 1.Westinghouse Science & Technology CenterPittsburghUSA
  2. 2.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA
  3. 3.Babcock & WilcoxLynchburgUSA
  4. 4.Applied Superconductivity CenterUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations