Cryogenic Liquid Hydrogen Suction Dip and Slosh Wave Excitation during Draining in Microgravity

  • R. J. Hung
  • K. L. Shyu
Chapter
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 39)

Abstract

The dynamical behavior of vapor ingestion, liquid residual at the incipience of suction dip, the critical liquid residual at the initiation of the liquid-vapor interface dip formed, and slosh wave excitation under normal and various reduced gravity environments and different flow rates of liquid have been investigated during the courses of liquid hydrogen draining. It shows that the liquid residual at the incipience of suction dip, and the critical liquid residual at the initiation of the liquid-vapor interface dip formed increases as the values of gravity environment decreases from normal gravity to lower reduced gravity, and also that the liquid residual increases as the flow rates of liquid increase during the courses of liquid hydrogen draining. In the slosh wave excitation, it shows that slosh waves are unable to excite for flow fields with a lower ratio of Bond number to Weber number. Results indicate that flow fields with lower flow rates of liquid draining and higher restoring force fields of gravity are responsible for the excitation of lower frequencies (higher wave periods) and higher wave amplitude slosh waves.

Keywords

Depression Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avduyevsky V. S. (editor), Scientific Foundations of Space Manufacturing, MIR, Moscow, USSR (1984).Google Scholar
  2. 2.
    Hung, R. J., Lee, C. C., and Leslie, F. W., J. of Propulsion and Power, 7: 556 (1991).CrossRefGoogle Scholar
  3. 3.
    Hung, R. J., and Shyu, K. L., J. Spacecraft and Rockets, 29: 279 (1991).CrossRefGoogle Scholar
  4. 4.
    Hung, R. J., and Shyu, K. L., Acta Astronautica, 25: 709 (1991).CrossRefGoogle Scholar
  5. 5.
    Mason, P., Collins, D., Petrac, D., Yang, L., Edeskuty, F., Schuch, A., and Williamson, K., Proceedings 7th International Cryogenic Engineering Conferences, (1978).Google Scholar
  6. 6.
    NASA Office of Aeronautics and Space Technology, Technology for Future NASA Mission: Civil Space Technology Initiative and Pathfinder, NASA CP-3016, NASA Washington, D. C. p. 568 (1988).Google Scholar
  7. 7.
    Hung, R. J., Tsao, Y. D., Hong, B. B., and Leslie, F. W., J. Spacecraft and Rockets, 26: 167 (1989).CrossRefGoogle Scholar
  8. 8.
    Hung, R. J., Lee, C. C., and Leslie, F. W., Acta Astronautica, 21: 309 (1990).CrossRefGoogle Scholar
  9. 9.
    Hung, R. J., Lee, C. C., and Shyu, K. L., J. Spacecraft and Rockets, 28: 71 (1991).CrossRefGoogle Scholar
  10. 10.
    Hung, R. J., Lee, C. C., and Leslie, F. W., Acta Astronautica, 25: 523 (1991).CrossRefGoogle Scholar
  11. 11.
    Leslie, F. W., J. of Fluid Mechanics, 16: 269 (1985).CrossRefGoogle Scholar
  12. 12.
    Kamotani, Y., Prasad, A., and Oastrach, S., AIAA J., 19: 511 (1981).CrossRefGoogle Scholar
  13. 13.
    Forward, R. L., Physical Review, Series D, 267: 735 (1982).Google Scholar
  14. 14.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A., W. H. Freeman Co., Gravitation San Francisco, CA, p. 1279 (1973).Google Scholar
  15. 15.
    Harlow, F. H., and Welch, J. E., Physics Fluids, 8: 2182 (1965).CrossRefGoogle Scholar
  16. 16.
    Spalding, D. B., Int. J. Numerical Methods In Engineering, 4: 551 (1972).CrossRefGoogle Scholar
  17. 17.
    Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere-McGraw-Hill, New York, p. 197 (1980).Google Scholar
  18. 18.
    Patankar, S. V., A Calculation Procedure for Heat, Mass and Momentum Transfer in Three Dimensional Parabolic Flows, Int. J. of Heat Mass Transfer, 15: 15 (1972).Google Scholar
  19. 19.
    Hung, R. J., and Shyu, K. L., Acta Astronautica, 25: 379 (1991).CrossRefGoogle Scholar
  20. 20.
    Hung, R. J., Lee, C. C., and Leslie, F. W., J. Guidance. Control and Dynamics, 15: 817 (1992).CrossRefGoogle Scholar
  21. 21.
    Hung, R. J., Shyu, K. L., and Lee, C. C., J. Spacecraft and Rockets, 29: 523 (1992).CrossRefGoogle Scholar
  22. 22.
    Hung, R. J., Shyu, K. L., and Lee, C. C., J. Propulsion and Power, 8; 778 (1992).CrossRefGoogle Scholar
  23. 23.
    Hung, R. J., and Shyu, K. L., Acta Astronautica, 26: 425 (1992).CrossRefGoogle Scholar
  24. 24.
    Hung, R. J., Lee, C. C., and Leslie, F. W., J. Fluids and Structure, 6; 493 (1992).CrossRefGoogle Scholar
  25. 25.
    Hung, R. J., and Shyu, K. L., J. Propulsion and Power, 8: 987 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. J. Hung
    • 1
  • K. L. Shyu
    • 1
  1. 1.Mechanical and Aerospace Engineering DepartmentThe University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations