A Semi-Theoretical Cubic Equation of State for Calculating Properties of Cryogenic Fluids

  • Shubao Shen
  • Benjamin C.-Y. Lu
Chapter
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 39)

Abstract

The analytical perturbed hard-sphere equation of state (EOS), recently developed from the square-well-linear-extension potential function, has been simplified. The resulting EOS is cubic in terms of volume while retaining the structure of the original equation. It was successfully applied to the prediction of thermodynamic properties of the molecular model fluids (square-well and Lennard-Jones), and saturated properties for seven cryogenic fluids (methane, argon, nitrogen, neon, oxygen, krypton and xenon).

Keywords

Methane Petroleum Argon Compressibility Xenon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Donohue and J.M. Prausnitz, Perturbed hard chain theory for fluid mixtures: Thermodynamic properties for mixtures in natural gas and petroleum technology, AIChE J. 24: 849 (1978).CrossRefGoogle Scholar
  2. 2.
    M.D. Donohue and P. Vimalchand, The perturbed-hard-chain theory, extensions and application, Fluid Phase Equilib. 40: 185 (1988).CrossRefGoogle Scholar
  3. 3.
    G.M. Sowers and S.I. Sandler, Equation of state from generalized perturbation theory. Part II.The Lennard-Jones fluid, Fluid Phase Equilib. 67: 127 (1991).CrossRefGoogle Scholar
  4. 4.
    S. Shen and B.C.-Y. Lu, A simple perturbed equation of state from a pseudo-potential function, Fluid Phase Equilib. 84: 9 (1993).CrossRefGoogle Scholar
  5. 5.
    S. Shen and B.C.-Y. Lu, Extension of the SWLE equation of state to property calculations for soft-core fluids, Fluid Phase Equilib. 86: 27 (1993).CrossRefGoogle Scholar
  6. 6.
    N.F. Carnahan and K.E. Starling, Intermolecular repulsions and the equation of state for fluids, AIChE J. 18: 1184 (1972).CrossRefGoogle Scholar
  7. 7.
    J.A. Barker and D. Henderson, Perturbation theory and equation of state for fluids: II. A successful theory of liquid, J.Chem. Phys. 47: 4714 (1967).CrossRefGoogle Scholar
  8. 8.
    H.-M. Lin, H. Kim, T.-M. Guo and K.C. Chao, Cubic Chain-of-rotators equation of state and VLE calculations, Fluid Phase Equilib. 13: 143 (1983).CrossRefGoogle Scholar
  9. 9.
    D. Henderson, W.G. Madden and D.D. Fitts, Monte Carlo and hypernetted chain equation of state for the square-well fluid, J. Chem. Phys. 64: 5026 (1976).CrossRefGoogle Scholar
  10. 10.
    M.-X. Guo, W.-C. Wang and H.-Z. Lu, Equation of state for pure and mixture square-well fluid.II. Equation of State, Fluid Phase Equilib. 60: 221 (1990).CrossRefGoogle Scholar
  11. 11.
    K. Aim and I. Nezbeda, Perturbed hard sphere equation of state of real liquids. I. Examination of a simple equation of the second order, Fluid Phase Equilib. 12: 235(1983).CrossRefGoogle Scholar
  12. 12.
    K.H. Lee, Lombardo and S.I. Sandler, The generalized van der Waals partition function. II. Application to the square-well fluid, Fluid Phase Equilib. 21: 177 (1985).CrossRefGoogle Scholar
  13. 13.
    K.H. Lee and S.I. Sandler, The generalized van der Waals partition function. IV. Local composition models for mixtures of unequal-size molecules, Fluid Phase Equilib. 34: 113 (1987)CrossRefGoogle Scholar
  14. 14.
    Jr., J.R. Elliott and T.E. Daubert, The temperature dependence of the hard-sphere diameter, Fluid Phase Equilib. 34: 113 (1987).CrossRefGoogle Scholar
  15. 15.
    Y. Adachi, T. Fijhara, M. Takamiya and K. Nakanishi, Generalized equation of state for Lennard-Jones fluids- I. Pure fluids and simple mixtures, Fluid Phase Equilib. 39: 1 (1988)CrossRefGoogle Scholar
  16. 16.
    Yuhua Song and E. A. Masoon, Statistical-mechanical theory of a new analytical equation of state, J. Chem. Phys. 91: 7840 (1989).CrossRefGoogle Scholar
  17. 17.
    L.N. Canjar and F.S. Manning, “Thermodynamic Properties and Reduced Correlations for Gases,” Gulf publishing company, Houston (1967).Google Scholar
  18. 18.
    S. Angus and B. Armstrong, “International Thermodynamic Tables of the Fluid State, Argon,” Butterworths, London (1971).Google Scholar
  19. 19.
    S. Angus, B. Armstrong and K.M. deReuck, “International Thermodynamic Tables of the Fluid State, Nitrogen,” Pergamon, Oxford (1979).Google Scholar
  20. 20.
    N.B. Vargaftik, “Tables on the thermophysical properties of liquids and gases,” 2nd ed. Hemisphere Pub. Co., Washington, DC (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Shubao Shen
    • 1
  • Benjamin C.-Y. Lu
    • 1
  1. 1.Department of Chemical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations