Skip to main content

Abstract

An enclosed pool fire was simulated by injecting ethane through a 6.2 cm diameter porous plate. The diffusion flame was investigated at low, normal and high gravity to 12 g. From scaling relations based on Froude modelling, the experimental flame characteristics (height, fluctuation frequency and radiant fraction of the flame) were correlated. The results were used for validation of numerical models and scale analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. McCaffrey, “Purely buoyant diffusion flames: some experimental results,” NBSIR 79-1910, National Bureau of Standards, Washington, D.C. (1979).

    Google Scholar 

  2. L. Orloff, J. de Ris and M.A. Delichatsios, General correlations of chemical species in turbulent fires, in: “Proceedings of the Twenty-first International Symposium on Combustion,” The Combustion Institute, (1986) p101.

    Google Scholar 

  3. D.A. Smith and G. Cox, Major chemical species in buoyant turbulent diffusion flames, Combustion and Flame, 91:226 (1992).

    Article  CAS  Google Scholar 

  4. M.A. Delichatsios, Air Entrainment into buoyant jet flames and pool fires, Combustion and Flame, 70:33 (1987).

    Article  CAS  Google Scholar 

  5. E.E. Zukoski, B.M. Cetegen and T. Kubota, Visible structure of buoyant diffusion flames, in: “Proceedings of the Twentieth International Symposium on Combustion,” The Combustion Institute (1984) p361.

    Google Scholar 

  6. E.J. Weckman and A. Sobiesak, The oscillatory behavior of medium-scale pool fires, in: “Proceedings of the Twenty-Second International Symposium on Combustion,” The Combustion Institute, (1989) p1299.

    Google Scholar 

  7. A. Schonbucher, B. Arnold, V. Barnhardt, V. Bieller, H. Kasper, M. Aufmann, R. Lucas, and N. Schiess, Simultaneous observation of organized density structures and the visible field in pool fires, in: “Proceedings of the Twenty-third International Symposium on Combustion”, The Combustion Institute (1986) p83.

    Google Scholar 

  8. M. Annarumma, J.M. Most and P. Joulain, On the numerical modelling of buoyancy-dominated turbulent vertical diffusion flames, Combustion and Flame, 85:403 (1991).

    Article  CAS  Google Scholar 

  9. B.M. Cetegen and T. Ahmed, Experiments on the periodic instability of buoyant plumes and pool fires, Combustion and Flames (submitted).

    Google Scholar 

  10. L.D. Chen and J.P. Seabe, Buoyant diffusion flames, in: “Proceedings of the Twenty-second International Symposium on Combustion,” The Combustion Institute (1988) p677.

    Google Scholar 

  11. R.W. Davis et al., Preliminary results of numerical-experimental study of the dynamic structure of a buoyant jet diffusion flame, Combustion and Flame, 83:263 (1990).

    Article  Google Scholar 

  12. D. Durox et al., Some effects of gravity on the behavior of premixed flames, Combustion and Flame, 82:66 (1990).

    Article  CAS  Google Scholar 

  13. R.A. Altenkirch, R. Eichorn, N.N. Hsu, A.B. Brancic and N.E. Cevallos, Characteristics of laminar gas jet diffusion flames under the influence of elevated gravity, in: “Proceedings of the Sixteenth International Symposium on Combustion,” The Combustion Institute (1976) p1165.

    Google Scholar 

  14. V.R. Katta, LP. Goss and W.M. Roquemore, Numerical investigations on the dynamic behavior of a H2-N2 diffusion flame under the influence of gravitational force, AIAA Paper 92-0335 (1992).

    Google Scholar 

  15. J.G. Quintiere, Scaling applications in fire research, Fire Safety Journal, 15:3 (1989).

    Article  Google Scholar 

  16. G.M Markstein, Relationship between smoke point and radiant emission from buoyancy turbulent and laminar diffusion flames, in: “Proceedings of the Twentieth International Symposium on Combustion,” The Combustion Institute (1984) p1055.

    Google Scholar 

  17. M.A. Delichatsios and L. Orloff, Effects of turbulence on flame radiation from diffusion flames, in: “Proceedings of the Twenty-Second International Symposium on Combustion,” The Combustion Institute (1993) p1271.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Liya L. Regel William R. Wilcox

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, J., Most, JM., Joulain, P., Durox, D. (1994). Fire Behavior in Macrogravity. In: Regel, L.L., Wilcox, W.R. (eds) Materials Processing in High Gravity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2520-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2520-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6073-5

  • Online ISBN: 978-1-4615-2520-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics