Advertisement

Strange Matter: A New Domain of Nuclear Physics

  • C. Greiner
  • A. Diener
  • J. Schaffner
  • H. Stöcker
Part of the NATO ASI Series book series (NSSB, volume 335)

Abstract

Perhaps the only unambiguous way to detect the transient existence of a temporarily created quark gluon plasma (QGP) might be the experimental observation of exotic remnants, like the formation of strange quark matter (SQM) droplets 1. First studies in the context of the MIT-bag model predicted that sufficiently heavy strangelets might be absolutely stable 2 or smaller ones at least metastable 1. The reason for the possible stability of SQM lies in introducing a third flavour degree of freedom, the strangeness, where the mass of the strange quarks is considerably smaller than the Fermi energy of the quarks, thus lowering the total mass per unit baryon number of the system. According to this picture, SQM should appear as a nearly neutral and massive state because the number of strange quarks is nearly equal to the number of massless up or down quarks and so the strange quarks neutralize that hypothetical form of nuclear matter.

Keywords

Nuclear Matter Quark Gluon Plasma Baryon Number Strange Quark Baryon Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Greiner, P. Koch and H. Stöcker, Phys. Rev. Lett. 58, 1825 (1987);ADSCrossRefGoogle Scholar
  2. C. Greiner, D.H. Rischke, H. Stöcker and P. Koch, Phys. Rev. D 38, 2797 (1988);ADSCrossRefGoogle Scholar
  3. C. Greiner and H. Stöcker, Phys. Rev. D 44, 3517 (1992)ADSCrossRefGoogle Scholar
  4. 2.
    E. Witten, Phys. Rev. D 30, 272 (1984);MathSciNetADSCrossRefGoogle Scholar
  5. E. Farhi and R. L. Jaffe, Phys. Rev. D 30, 2379 (1984)ADSCrossRefGoogle Scholar
  6. 3.
    C. B. Dover, D.J. Millener and A. Gal, Phys. Rep. 184, 1 (1989)ADSCrossRefGoogle Scholar
  7. 4.
    R. Mattiello and H. Sorge, private communicationGoogle Scholar
  8. 5.
    M. Rufa, J. Schaffner, J. A. Maruhn, H. Stöcker, W. Greiner and P.-G. Reinhard, Phys. Rev. C 42, 2469 (1990)ADSCrossRefGoogle Scholar
  9. 6.
    J. Schaffner, C. Greiner and H. Stöcker, Phys. Rev. C 46, 322 (1992)ADSCrossRefGoogle Scholar
  10. 7.
    S. A. Chin and A. K. Kerman, Phys. Rev. Lett. 43, 1292 (1979)ADSCrossRefGoogle Scholar
  11. 8.
    J. Schaffner, C. B. Dover, A. Gal, C. Greiner and H. Stöcker: submitted to Phys. Rev. Lett.Google Scholar
  12. 9.
    P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986)ADSCrossRefGoogle Scholar
  13. 10.
    A. Diener, C. Greiner, J. Schaffner and H. Stöcker, publication in preparationGoogle Scholar
  14. 11.
    C. Greiner, publication in preparationGoogle Scholar
  15. 12.
    P. Koch, Nucl. Phys. B (Proc. Suppl.) 24B, 255 (1991)ADSCrossRefGoogle Scholar
  16. H. Heiselberg, J. Madsen and K. Riisager, Phys. Scri. 34, 556 (1986)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • C. Greiner
    • 1
  • A. Diener
    • 2
  • J. Schaffner
    • 2
  • H. Stöcker
    • 2
  1. 1.Department of PhysicsDuke UniversityDurhamUSA
  2. 2.Institut für Theoretische PhysikJ.W. Goethe-UniversitätFrankfurtGermany

Personalised recommendations