Quantum Dynamics in Phase Space

  • A. Smerzi
  • V. Kondratyev
  • A. Bonasera
Part of the NATO ASI Series book series (NSSB, volume 335)


Semiclassical kinetic equations, like for example the Boltzmann-Nordheim-Vlasov (BNV) [1,2] and classical hydrodynamics [3], are used extensively to describe heavy ions collisions at intermediate and high energy [1,4]. The processes as the deep-inelastic or collective excitations are tentatively described in the Vlasov approximation [5,8] that represent the lowest order term in ħ-series expansion of the time dependent Hartree Fock equation (TDHF) [9,10]. This approximation, suitable in order to study average quantum observables or system at high entropy, washes out shell effects and neglects other typical quantum effects as tunneling and coherence.


Collective Motion Coulomb Barrier Giant Dipole Resonance Vlasov Equation Wigner Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Bonasera, F. Gulminelli and J. Molitoris Phys. Rep. (to be published)Google Scholar
  2. 2.
    A. Bonasera et al. Phys. Lett. B246 (1990) 337ADSGoogle Scholar
  3. 3.
    This conferenceGoogle Scholar
  4. 4.
    G.F. Bertsch and S. Das Gupta Phys. Rep. 160 (1988) 189ADSCrossRefGoogle Scholar
  5. 5.
    M. Papa et al. submitted for publicationGoogle Scholar
  6. 6.
    D.M. Brink, A. Dellafiore and M. Di Toro Nucl. Phys. A456 (1986) 205ADSGoogle Scholar
  7. G.F. Burgio and M. Di Toro Nucl. Phys. A476 (1988) 189ADSGoogle Scholar
  8. 7.
    A. Smerzi, A. Bonasera and M. Di Toro Phys. Rev. C44 (1991) 1713ADSGoogle Scholar
  9. 8.
    Chomaz, M. Di Toro, A. Smerzi, Nucl. Phys. A563 (1993) 509ADSGoogle Scholar
  10. 9.
    E.P. Wigner Phys. Rev. 40 (1932) 749ADSCrossRefGoogle Scholar
  11. 10.
    P. Carruthers and F. Zachariesen Rev. Mod. Phys. 55 (1983) 245ADSCrossRefGoogle Scholar
  12. 11.
    A. Bonasera, V.N. Kondratyev, A. Smerzi and E.A. Remler Phys. Rev. Lett. 71 (1993) 505ADSCrossRefGoogle Scholar
  13. 12.
    V.N. Kondratiev, A. Smerzi and A. Bonasera, Nucl. Phys. A (1994) (in press) A. Smerzi, Ph.D. Thesis, Catania 1994, unpublishedGoogle Scholar
  14. 13.
    S.John and E.A. Remler Ann. Phys. 180 (1987) 152MathSciNetADSCrossRefGoogle Scholar
  15. 14.
    E.J. Heller J. Chem. Phys. 65 (1976) 1289MathSciNetADSCrossRefGoogle Scholar
  16. 15.
    G.R. Chin and J. Rafelski Phys. Rev. A48 (1993) 1869ADSGoogle Scholar
  17. 16.
    K. Takashi J. Phys. Soc. Japan. 55 (1986) 762; 1443; 57 (1988) 442MathSciNetADSCrossRefGoogle Scholar
  18. 17.
    Y. Kluger, J.M. Eisenberg, B. Svetitsky, F. Copper and E. Mottola Phys. Rev. Lett. 67 (1991) 2427; Phys. Rev. D45 (1992) 4659ADSCrossRefGoogle Scholar
  19. 18.
    C.Wang Phys. Rev. C25 (1982) 1460 A398 (1983) 544ADSGoogle Scholar
  20. 19.
    P. Ring and P. Shuck The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980)CrossRefGoogle Scholar
  21. 20.
    M. Durand, V.S. Ramamurty and P. Schuck Phys. Lett. 113B (1982) 116ADSGoogle Scholar
  22. 21.
    A. Bonasera, M. Di Toro, A. Smerzi and D. Brink, Nucl. Phys. A in pressGoogle Scholar
  23. 22.
    V. Abrosimov, M. Di Toro and A. Smerzi Zeit. Fur Physik, in pressGoogle Scholar
  24. 23.
    L.D. Landau Sov. Phys. JETP 16 (1946)574MATHGoogle Scholar
  25. E. Lifshits and L. Pitaevskyi, Physical Kinetics (Pergamon, NY, 1981)Google Scholar
  26. 24.
    A. Bonasera, F. Gulminelli and P. Schuck Phys. Rev. 46C (1992) 1431ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. Smerzi
    • 1
    • 3
  • V. Kondratyev
    • 1
    • 2
  • A. Bonasera
    • 1
  1. 1.INFN-Laboratorio Nazionale del SudCataniaItaly
  2. 2.Institute for Nuclear ResearchKievUkraine
  3. 3.Dipartimento di Fisica dell’ Universita’ di CataniaCataniaItaly

Personalised recommendations