Hot and Dense Nuclear Matter pp 373-381 | Cite as

# String-Parton Model Description of Relativistic Heavy-Ion Collisions

## Abstract

Various models have been developed to address the ordinary hadronic physics that occurs in relativistic heavy-ion collisions. These include string-based fragmentation models such as the LUND model^{1}, and its extensions in FRITIOF^{2}, which assume that excited hadrons behave as a chain of color dipoles that move like one-dimensional relativistic strings. Interactions are introduced via multiple small momentum exchanges between the color dipoles of two overlapping strings. Other nondynamical models are the dual-parton model^{3}, in which the strings are formed by soft gluon exchange between the valence partons of the colliding hadrons. The quark-gluon string model^{4} (QGSM), also based on the dual parton model, has been developed to study soft parton collisions, and includes rescattering. The *strings* in the above models are in fact one-dimensional constructions in momentum space, and string evolution is carried out in this space. They are sometimes referred to as the longitudinal phase space models. Any coordinate space quantities that these models may study come from transformations from momentum space one-dimensional string coordinates to configuration space. Relativistic quantum molecular dynamics (RQMD) calculations have also been performed to study relativistic collision phenomena^{5}. This approach combines resonance formation and decay of light hadronic states, and one-dimensional string fragmentation (LUND model) for very heavy resonances. RQMD follows the full space-time evolution of the light hadronic states, and uses one-dimensional momentum space evolution for the heavy states via the LUND string description.

## Keywords

Color Dipole Central Rapidity Region String Endpoint Maximum Energy Density NA35 Data## Preview

Unable to display preview. Download preview PDF.

## References

- 1.B. Andersson and G. Gustafson, Z. Phys. C
**3**, 223 (1980)ADSGoogle Scholar - B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, Phys. Rep.
**97**, 33 (1983).ADSCrossRefGoogle Scholar - 2.B. Andersson, G. Gustafson, and B. Nilsson-Almqvist, Nucl. Phys.
**B281**, 289 (1987).ADSCrossRefGoogle Scholar - 3.K. Werner, Z. Phys. C
**42**, 85 (1989).Google Scholar - 4.N. S. Amelin, E. F. Staubo, L. P. Csernai, V. D. Toneev, K. K. Gudima, and D. Strottman, Phys. Lett.
**B261**, 352 (1991).ADSGoogle Scholar - 5.H. Sorge, A. v. Keitz, R. Mattiello, H. Stöcker, and W. Greiner, Z. Phys. C.
**47**629 (1990).ADSGoogle Scholar - 6.D. J. Dean, A. S. Umar, J. -S. Wu, and M. R. Strayer, Phys. Rev. C
**45**, 400 (1992).ADSGoogle Scholar - 7.A. S. Umar, D. J. Dean, and M. R. Strayer, in Proceedings of
*Quark Matter ’91*, edited by T. C. Awes, F. E. Obenshain, F. Plasil, M. R. Strayer, and C. Y. Wong, Nucl. Phys.**A544**, 475c (1992).Google Scholar - 8.D. J. Dean, M. Gyulassy, B. Müller, E. A. Remler, M. R. Strayer, A. S. Umar, and J.-S. Wu, Phys. Rev. C
**46**, 2066 (1992).ADSGoogle Scholar - 9.D. J. Dean, A. S. Umar, and M. R. Strayer, Intl. Jour. of Mod. Phys. E.Google Scholar
- 10.R. Albrecht, et al., WA80 Collaboration, Phys. Rev. C
**44**, 2736 (1991).ADSGoogle Scholar - 11.H. Ströbele et al., NA35 Collaboration, Nucl. Phys.
**A525**, 59c (1991).ADSGoogle Scholar - 12.R. Cutler and D. Sivers, Phys. Rev. D
**17**, 196 (1978).ADSGoogle Scholar - 13.N. Isgur, Nucl. Phys.
**A497**, 91c (1989)ADSGoogle Scholar - K. Maltman and N. Isgur, Phys. Rev. D
**29**, 952 (1984).ADSGoogle Scholar - 14.R. Kokoski and N. Isgur, Phys. Rev. D
**35**, 907 (1987)ADSCrossRefGoogle Scholar - G. A. Miller, Phys. Rev. D
**37**, 2431 (1988)ADSCrossRefGoogle Scholar - P. Geiger and N. Isgur, Phys. Rev. D
**41**, 1595 (1990).ADSCrossRefGoogle Scholar - 15.P. Mättig, Phys. Rep.
**177**, 141 (1989).ADSCrossRefGoogle Scholar - 16.K. Sailer, B. Müller, and W. Greiner, J. Mod. Phys.
**A4**, 437 (1989)ADSGoogle Scholar - 16.K. Sailer, B. Müller, and W. Greiner, Proc. of
*The Nuclear Equation of State*, ed. W. Greiner and H. Stöcker, (Plenum, New York, 1990) p.531.Google Scholar - 17.E. A. Remler, Proc. of
*Gross Properties of Nuclei and Nuclear Excitations*, Hirschegg, 1987, p.24.Google Scholar - 18.K. Werner, Phys. Lett.
**B219**, 111 (1989).ADSGoogle Scholar