Advertisement

Wavelet Correlations in Selfsimiliar Cascades

  • Martin Greiner
  • Peter Lipa
  • Peter Carruthers
Part of the NATO ASI Series book series (NSSB, volume 335)

Abstract

It is always a good thing to look for new methods and technologies, which have been developed even outside of physics; in some cases this is extremely beneficial. Here we report on such a new method: the wavelet transformation1, 2. It has found widespread application in engineering for signal processing and data compression3.

Keywords

Wavelet Transformation Scaling Function Parton Shower Wavelet Basis Multiresolution Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Daubechies, Comm. Pure Appl. Math., 41: 909 (1988); “Ten Lectures on Wavelets”, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992).MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Y. Meyer, “Wavelets and Operators”, Cambridge University Press, New York (1992); “Wavelets: Algorithms and Applications”, Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1993).MATHGoogle Scholar
  3. 3.
    S. Mallat, IEEE Trans. Pattern Anal, and Machine Intell. 11: 674 (1989).ADSMATHCrossRefGoogle Scholar
  4. 4.
    M.B. Ruskai et. al., “Wavelets and Their Application”, Jones and Bartlett, Boston (1992).Google Scholar
  5. 5.
    C. Meneveau and K.R. Sreenivasan, Phys. Rev. Lett. 59: 1424 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    M. Greiner, P. Lipa and P. Carruthers, preprint HEPHY-PUB 586/93.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Martin Greiner
    • 1
  • Peter Lipa
    • 2
  • Peter Carruthers
    • 3
  1. 1.Institut für Theoretische PhysikJustus Liebig UniversitätGiessenGermany
  2. 2.Institut für Hochenergiephysik der Österreichischen Akademie der WissenschaftenWienAustria
  3. 3.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations