Skip to main content

The Disappearance of Flow and Critical Behavior in Nucleus-Nucleus Collisions

  • Chapter
Hot and Dense Nuclear Matter

Abstract

The equation of state of nuclear matter (EOS) is basic information that can be extracted from detailed studies of nucleus-nucleus collisions. Using the MSU 4π Array, we have carried out a series of studies concerning the EOS including the disappearance of collective flow, critical behavior of nuclear matter, the onset of multifragmentation. In the disappearance of flow work, we attempt to extract information about the EOS by making systematic measurements of collective flow and determining the incident energy at which flow disappears. We studied collective flow from the systems C+C, Ne+Al, Ar+Sc, and Kr+Nb at a variety of incident energies. Comparing these results with Boltzmann-Uehling-Uehlenbeck (BUU) calculations, we can extract information about the EOS using an observable that is less sensitive to details of the theoretical calculation. In the critical behavior work, we studied central collisions of Ar+Sc at 15 to 115 MeV/nucleon from which we extracted Z distributions. We related these results to critical phenomena in nuclear matter using a percolation model which we fit to the observed Z distributions and then extrapolated to infinite nuclear matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.D. Westfall, J.E. Yurkon, J. van der Plicht, Z.M. Koenig, B.V. Jacak, R. Fox, G.M. Crawley, M.R. Maier, B.E. Hasselquist, R.S. Tickle, and D. Horn, Nucl. Inst. Meth. A238, 347 (1985).

    ADS  Google Scholar 

  2. D. Cebra, S. Howden, J. Karn, D. Kataria, M. Maier, A. Nadasen, C. A. Ogilvie, N. Stone, D. Swan, A. M. Vander Molen, W. K. Wilson, J. S. Winfield, J. Yurkon, G. D. Westfall, E. Norbeck, Nucl. Instr. and Meth. A300, 518 (1991).

    ADS  Google Scholar 

  3. H.H. Gutbrod, A.M. Poskanzer, and H.G. Ritter, Rep. Prog. Phys. 52, 1267 (1989).

    Article  ADS  Google Scholar 

  4. P. Danielewicz, H. Ströbele, G. Odyniec, D. Bangert, R. Bock, R. Brockmann, J.W. Harris, H.G. Pugh, W. Rauch, R.E. Renfordt, A. Sandoval, D. Schall, L.S. Schroeder and R. Stock, Phys. Rev. C38, 120 (1988).

    ADS  Google Scholar 

  5. C.A. Ogilvie, W. Bauer, D.A. Cebra, J. Clayton, S. Howden, J. Karn, A. Nadasen, A. Vander Molen, G.D. Westfall, W.K. Wilson, and J.S. Winfield, Phys. Rev. C42, R10 (1990).

    ADS  Google Scholar 

  6. D. Krofcheck, W. Bauer, G.M. Crawley, C. Djalali, S. Howden, C.A. Ogilvie, A. Vander Molen, G.D. Westfall, and W.K. Wilson, R.S. Tickle, and C. Gale, Phys. Rev. Lett. 63, 2028 (1989).

    Article  ADS  Google Scholar 

  7. J.P. Sullivan, J. Péter, D. Cussol, G. Bizard, R. Brou, M. Louvel, J.P. Patry, R. Regimbart, J.C. Steckmeyer, B. Tamain, E. Crema, H. Doubre, K. Hagel, G.M. Jin, A. Péghaire, F. Saint-Laurent, Y. Cassagnou, R. Lebrun, E. Rosato, R. Macgrath, S.C. Jeong, S.M. Lee, Y. Nagashima, T. Nakagawa, M. Ogihara, J. Kasagi, and T. Motobayashi, Phys. Lett. B249, 8 (1990).

    ADS  Google Scholar 

  8. W.M. Zhang, R. Madey, M. Elaasar, J. Schambach, D. Keane, B.D. Anderson, A.R. Baldwin, J. Cogar, J.W. Watson, G.D. Westfall, G. Krebs, and H. Wieman, Phys. Rev. C42, R491 (1990).

    ADS  Google Scholar 

  9. D. Krofcheck, D.A. Cebra, M. Cronqvist, R. Lacey, T. Li, C.A. Ogilvie, A. Vander Molen, K. Tyson, G.D. Westfall, W.K. Wilson, J.S. Winfield, A. Nadasen, and E. Norbeck, Phys. Rev. C43, 350 (1991).

    ADS  Google Scholar 

  10. D. Krofcheck, W. Bauer, G.M. Crawley, S. Howden, C.A. Ogilvie, A. Vander Molen, G.D. Westfall, W.K. Wilson, R.S. Tickle, C. Djalali, and C. Gale, Phys. Rev. C46, 1416 (1992).

    ADS  Google Scholar 

  11. J. Molitoris and Horst H. Stöcker, Phys. Lett. 162B, 47 (1985).

    ADS  Google Scholar 

  12. G.F. Bertsch, W.G. Lynch and M.B. Tsang, Phys. Lett. 189B, 384 (1987).

    ADS  Google Scholar 

  13. W.K. Wilson, R. Lacey, C.A. Ogilvie, and G.D. Westfall, Phys. Rev. C45, 768 (1992).

    ADS  Google Scholar 

  14. W. Bauer, Phys. Rev. Lett. 61, 2534 (1988)and W. Bauer, C.K. Gelbke, and S. Pratt, Ann. Rev. Nucl. Part. Sci. 42, 77 (1992).

    Article  ADS  Google Scholar 

  15. David H. Boal, Alan L. Goodman, Phys. Rev. C33, 1690 (1986).

    ADS  Google Scholar 

  16. Alan L. Goodman, Joseph I. Kapusta, Aram Z. Mekjian, Phys. Rev. C30 851 (1984).

    ADS  Google Scholar 

  17. Joseph Kapusta, Phys. Rev. C29 1735 (1984).

    ADS  Google Scholar 

  18. H. R. Jaqaman, A. Z. Mekjian, and L. Zamick, Phys. Rev. C29 2067 (1984).

    ADS  Google Scholar 

  19. W. Bauer, D. R. Dean, U. Mosel and U. Post, Phys. Lett. 150B 53 (1985).

    ADS  Google Scholar 

  20. A. D. Panagiotou, M. W. Curtin, H. Toki, D. K. Scott, and P. J. Siemens, Phys. Rev. Lett. 52, 496 (1984).

    Article  ADS  Google Scholar 

  21. M. E. Fisher, Physics 3, 255 (1967).

    Google Scholar 

  22. N. T. Porile, A. J. Bujak, D. D. Carmony, Y. H. Chung, L. J. Gutay, A. S. Hirsch, M. Mahi, G. L. Paderewski, T. C. Sangster, R. P. Scharenberg, and B. C. Stringfellow, Phys. Rev. C39, 1914 (1989).

    ADS  Google Scholar 

  23. A. S. Hirsch, A. Bujak, J. E. Finn, L. J. Gutay, R. W. Minich, N. T. Porile, R. P. Scharenberg, and B. C. Stringfellow, Phys. Rev. C29, 508 (1984).

    ADS  Google Scholar 

  24. W. Bauer, Phys. Rev. C38, 1297 (1988).

    ADS  Google Scholar 

  25. T. Li, W. Bauer, D. Craig, M. Cronqvist, E. Gualtieri, S. Hannuschke, R. Lacey, W. J. Llope, T. Reposeur, A. M. Vander Molen, G. D. Westfall, W. K. Wilson, J. S. Winfield, J. Yee, S. J. Yennello, A. Nadasen, R. S. Tickle and E. Norbeck, Phys. Rev. Lett. 70 1924 (1993).

    Article  ADS  Google Scholar 

  26. G. D. Westfall, J. Gosset, P. J. Johansen, A. M. Poskanzer, W. G. Meyer, H. H. Gutbrod, A. Sandoval and R. Stock, Phys. Rev. Lett. 37, 1202 (1976).

    Article  ADS  Google Scholar 

  27. G. D. Westfall, B. V. Jacak, N. Anantaraman, M. W. Curtin, G. M. Crawley, C. K. Gelbke, B. Hasselquist, W. G. Lynch, D. K. Scott, B. M. Tsang, M. J. Murphy, T. J. M. Symons, R. Legrain, and T. J. Majors, Phys. Lett. 116B, 118 (1982).

    ADS  Google Scholar 

  28. B. V. Jacak, G. D. Westfall, G. M. Crawley, D. Fox, C. K. Gelbke, L. H. Harwood, B. E. Hasselquist, W. G. Lynch, D. K. Scott, H. Stöcker, M. B. Tsang, and G. Buchwald, Phys. Rev. C35, 1751 (1987).

    ADS  Google Scholar 

  29. C. A. Ogilvie, J. C. Adloff, M. Begemann-Blaich, P. Bouissou, J. Hubele, G. Imme, I. Iori, P. Kreutz, G. J. Kunde, S. Leray, V. Lindenstruth, Z. Liu, U. Lynen, R. J. Meijer, U. Milkau, W. F. J. Müller, C. Ngô, J. Pochodzalla, G. Raciti, G. Rudolf, H. Sann, A. Schüttauf, W. Seidel, L. Stuttge, W. Trautmann, and A. Tucholski, Phys. Rev. Lett. 67, 1214 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Westfall, G.D. et al. (1994). The Disappearance of Flow and Critical Behavior in Nucleus-Nucleus Collisions. In: Greiner, W., Stöcker, H., Gallmann, A. (eds) Hot and Dense Nuclear Matter. NATO ASI Series, vol 335. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2516-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2516-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6071-1

  • Online ISBN: 978-1-4615-2516-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics