Skip to main content

Towards a Cleaner Environment Using Electrochemical Techniques

  • Chapter
Electrochemical Engineering and Energy

Abstract

Electrochemical processes can contribute considerably to environmental protection by means of waste purification processes and production integrated waste minimization. As examples of waste purification techniques, electrochemical processes for gas purification and removal of toxic metal ions from waste water will be described. For production integrated processes, the examples given are fluidized bed electrolysis for metal recovery in cellulose acetate production, the membrane process for alkali chloride electrolysis, and the electroreduction of dichloroacetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Kreysa, and W. Kochanek, Möglichkeiten der elektrochemischen Abgasreinigung, Chem. Ind. 36:45 (1984).

    CAS  Google Scholar 

  2. G. Kreysa, and H.-J. Külps, Ein elektrochemisches Absorptionsverfahren zur Gasreinigung, Chem. Ing. Tech. 55:58 (1983).

    Article  CAS  Google Scholar 

  3. G. Kreysa, and H.-J. Külps. A new electrochemical gas purification process, Ger. Chem. Eng. 6:352 (1983).

    Google Scholar 

  4. G. Kreysa, H.-J. Külps. and C. Woebcken, Elektrochemische Gasreinigung. Dechema-Monographien 94:199 (1983).

    CAS  Google Scholar 

  5. G. Kreysa, Elektrochemische Aspekte der Rauchgas-Reinigung, Dechema-Monographien 109:9 (1987).

    CAS  Google Scholar 

  6. D. van Velzen, H. Langenkamp, and A. Moryoussef, HBr electrolysis in the ISPRA Mark 13A flue gas desulphurization process: electrolysis in a DEM cell, J. Appl. Electrochem. 20:60 (1990).

    Article  Google Scholar 

  7. Lurgi Schnellinformation C 1217/12.76 (1976), U.K. Pat. 930, 548.

    Google Scholar 

  8. F. Strafelda, and J. Krofta, Czcheh. Pat. 153372 (1974).

    Google Scholar 

  9. G. Kreysa, J. M. Bisang, W. Kochanek, and G. Linzbach, Fundamental studies on a new concept of flue gas desulphurization, J. Appl. Electrochem. 15:639 (1985).

    Article  CAS  Google Scholar 

  10. Final technical report: Heterogeneously and homogeneously catalysed electrochemical gas purification for SO2 and NOX removal, Brite-Euram project No P-2026: Poject partners: DECHEMA e.V. (D), enViro-cell GmbH (D), LSGC-CNRS. Nancy (F). SOCREMATIC SA (F), 1988-1992.

    Google Scholar 

  11. K. Jüttner, and G. Kreysa, New electrochemical concepts of gas purification, Bull. Electrochem. 8:1 (1992).

    Google Scholar 

  12. K. Jüttner, G. Kreysa, K.-H-Kleifges, and R. Rottmann, Elektrochemisches Abgasreinigungsverfahren zursimultanen Entfernung von SO2 und NOX, Chem. Ing. Tech. 66:82 (1994).

    Article  Google Scholar 

  13. R. Rottmann, “Entwicklung und Untersuchung verschiedener Konzepte zur elektrochemischen SO2-Entfernung aus Rauchgasen,” Thesis, Fortschrittsber. VDI, Reihe 15, VDI-Verlag, Düsseldorf 1993.

    Google Scholar 

  14. G. Kreysa, Reactor design for electrochemical water treatment, in:“Process technologies for water treatment,” ed., S. Stucki, Plenum Publishing Corp., New York, London, Washington, Boston (1988).

    Google Scholar 

  15. K.J. Müller, and G. Kreysa, Festbettelektrolyse — Design-Konzepte und ihre industrielle Anwendung, Dechema Monographien 98:367 (1985).

    Google Scholar 

  16. R. Kammel, and H.-W. Lieber, Möglichkeiten zur Behandlung galvanischer Abwässer unter Vermeidung von Sonderabfällen, Teil III, Galvanotechnik 68:413 (1977).

    CAS  Google Scholar 

  17. A.T. Kuhn, Electrochemical techniques for effluent treatment, Chem. Ind. 946 (1971).

    Google Scholar 

  18. R. Kammel, and H.-W. Lieber, cf 16., Teil VI, Galvanotechnik 68:883 (1977).

    CAS  Google Scholar 

  19. R. Kammel, and H.-W. Lieber, cf 16., Teil VII Galvanotechnik 69:317, Teil VIII 69:624 (1978).

    CAS  Google Scholar 

  20. G. Kreysa, Festbettelektrolyse — ein Verfahren zur Reinigung metallhaltiger Abwässer, Chem. Ing. Tech. 50:332 (1978).

    Article  CAS  Google Scholar 

  21. G. Kreysa, Reinigung und Recycling metallhaltiger Abwässer durch Festbettelektrolyse, Metalloberfläche 34:494 (1980).

    CAS  Google Scholar 

  22. G. Kreysa, Performance criteria and nomenclature in electrochemical engineering, J. Appl Electrochem. 15:175 (1985).

    Article  CAS  Google Scholar 

  23. G. Kreysa, Normalized space velocity — a new figure of merit for waste water electrolysis cells, Electrochim. Acta 26:1693 (1981).

    Article  CAS  Google Scholar 

  24. R.E.W. Janson, and R.J. Marshall, Chem. Engineer 315:769 (1976).

    Google Scholar 

  25. R.E.W. Janson, and N.R. Tomov, Chem. Engineer 327:867 (1977).

    Google Scholar 

  26. D.R. Gabe, The rotating cylinder electrode, J. Appl. Electrochem. 4:91 (1974).

    Article  CAS  Google Scholar 

  27. F.S. Holland, The development of the Eco-Cell process, Chem. Ind. 453 (1978).

    Google Scholar 

  28. L.J. Ricci, Chem. Eng. 29 (1975).

    Google Scholar 

  29. R. Kammel, and H.-W. Lieber, cf 16. Teil IV, Galvanotechnik 68:710 (1977).

    CAS  Google Scholar 

  30. W. Götzelmann, cf 16. Teil V, Galvanotechnik 68:789 (1977).

    Google Scholar 

  31. D. Bruhn, W. Dietz, K.-J. Müller, and C. Reynvaan, EPA 86109265.8 (1986).

    Google Scholar 

  32. A. Storck, P.M. Robertson, and N. Ibl, Mass transfer study of three-dimensional electrodes composed of stacks of nets, Electrochim. Acta 24:373 (1979).

    Article  CAS  Google Scholar 

  33. P.M. Robertson, F. Schwager, and N. Ibl, A new cell for electrochemical processes, J. Electroanal. Chem. 65:883 (1975).

    Article  CAS  Google Scholar 

  34. K.B. Keating, and J.M. Williams, Res. Rec. Conserv. 2:39 (1976).

    CAS  Google Scholar 

  35. D.N. Bennion, and J. Newman, Electrochemical removal of copper ions from very dilute solutions, J. Appl. Electrochem. 2:113 (1972).

    Article  CAS  Google Scholar 

  36. G. A. Carlson, E.E. Estep, and D. Jacqueau, Eine poröse Kathodenzelle für die Laugenreinigung, Chem. Ing. Tech. 45:217 (1973).

    Article  CAS  Google Scholar 

  37. R.S. Wenger, and D.N. Bennion, Electrochemical concentrating and purifying from dilute copper solutions, J. Appl. Electrochem. 6:385 (1976).

    Article  CAS  Google Scholar 

  38. J. van Zee, and J. Newman, Electrochemical removal of silver ions from photographic fixing solutions using a porous flow through electrode, J. Electrochem. Soc. 124:706 (1977).

    Article  Google Scholar 

  39. G. Kreysa, Elektrochemie mit dreidimensionalen Elektroden, Chem. Ing. Tech. 55:23 (1983).

    Article  CAS  Google Scholar 

  40. G. Kreysa, and C. Reynvaan, Optimal design of packed bed cells for high conversion, J. Appl. Electrochem. 12:241 (1982).

    Article  CAS  Google Scholar 

  41. G. Kreysa, Elektrochemische Zelle, DE 26 22 497 (1976).

    Google Scholar 

  42. J.R. Backhurst, J.M. Coulson, F. Goodridge, R.E. Plimley, and M. Fleischmann, A preliminary investigation of fluidized bed electrodes, J. Electrochem. Soc. 116:1600 (1969).

    Article  Google Scholar 

  43. J.R. Backhurst, M. Fleischmann, F. Goodridge, and R.E. Plimley, GB Pat. 1 194 181 (1970).

    Google Scholar 

  44. H. Scharf, DE 22 27 084 (1972).

    Google Scholar 

  45. C. Raats, H. Boon, and W. Eveleens, Erzmetall 30:365 (1977).

    CAS  Google Scholar 

  46. G. v. Heiden, C. Raats, and H. Boon, Fluidised bed electrolysis removal or recovery of metals from dilute solutions, Chem. Ind. 465 (1978).

    Google Scholar 

  47. R. Kammel, and H.-W. Lieber, cf 16. Teil IX, Galvanotechnik 69:687 (1978).

    CAS  Google Scholar 

  48. W. Götzelmann, Die elektrolytische Metallrückgewinnung — Wirtschaftlichkeit und praktischer Einsatz Galvanotechnik 70:596 (1979).

    Google Scholar 

  49. K. Scott, A consideration of circulating bed electrodes for recovery of metal from dilute solutions, J. Appl. Electrochem. 18:504 (1988).

    Article  CAS  Google Scholar 

  50. T. Bachmann, I. Vermes, and E. Heitz, Abbau umweltbelastender halogenierter Kohlenwasserstoffe durch Metalle, Dechema-Monographien 124:221 (1991).

    CAS  Google Scholar 

  51. J. Newman, and C.W. Tobias, Theoretical analysis of current distribution in porous electrodes, J. Electrochem. Soc. 109:1183 (1962).

    Article  CAS  Google Scholar 

  52. A.K.P. Chu, M. Fleischmann, and G.J. Hills, Packed bed electrodes I. The electrochemical extraction of copper ions from dilute aqueous solutions, J. Appl. Electrochem. 4:323 (1974).

    Article  CAS  Google Scholar 

  53. R. Alkire, and P.K. Ng, Two-dimensional current distribution within a packed-bed electrochemical flow reactor, J. Electrochem. Soc. 121:95 (1974).

    Article  CAS  Google Scholar 

  54. D.N. Bennion, Electrochemical removal of copper ions from very dilute solutions, J. Appl. Electrochem. 2:113 (1972).

    Article  CAS  Google Scholar 

  55. J.A. Traiham, and J. Newman, A flow through porous electrode model: application to metal-ion removal from dilute streams, J. Electrochem. Soc. 124:1528 (1977).

    Article  Google Scholar 

  56. D.S. Flett, Methods, apparatus: new product research, process development and design, Chem. Ind. 13:300 (1971).

    Google Scholar 

  57. D.S. Flett, The fluidized-bed electrode in extractive metallurgy, Chem. Ind. 983 (1972).

    Google Scholar 

  58. H.-D. Steppke, and R. Kammel, Erzmetall 26:533 (1973).

    CAS  Google Scholar 

  59. A.J. Monhemius, and P.L.N. Costa, Hydrometallurgy 1:183 (1975).

    Article  CAS  Google Scholar 

  60. G. Kreysa, Theoretische Grundlagen, technischer Stand und Anwendungsmöglichkeiten von Fest-und Wirbelbettelektroden, Erzmetall 28:440 (1975).

    CAS  Google Scholar 

  61. G. Kreysa, Aktuelle Entwicklungslinien der elektrochemischen Prozeßtechnik, Chem. Ing. Tech. 55:267 (1983).

    Article  CAS  Google Scholar 

  62. Bergner, Chem.-Ztg. 104:215 (1980).

    CAS  Google Scholar 

  63. D. Bergner, Membrane cells for chlor-alkali electrolysis, J. Appl. Electrochem. 12:631 (1982).

    Article  CAS  Google Scholar 

  64. S. Dapperheld, Elektrokatalytisches Verfahren zur Aufbereitung von Mutterlaugen aus Chloressigsäure-Produktion, Dechema-Monographien 112:317 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kreysa, G., Jüttner, K. (1995). Towards a Cleaner Environment Using Electrochemical Techniques. In: Lapicque, F., Storck, A., Wragg, A.A. (eds) Electrochemical Engineering and Energy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2514-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2514-1_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6070-4

  • Online ISBN: 978-1-4615-2514-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics